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1  INTRODUCTION

Tools used for various measurements in bore holes are frequently suspended on a 
cable whose diameter is small compared to the bore hole diameter.  This study presents a 
model for estimating the influence of filter cake thickness on the cable axial drag force 
per unit of cable length.  Differential sticking results when the drag force is sufficient to 
prevent the tool from being lowered or retrieved in the bore hole.

Differential sticking has been studied from many points of view.  A 
comprehensive review of the studies is given in Reference 1.  Many of the studies are for 
drill collars in bore holes and are not applicable to the analysis presented here.  This 
report will not attempt to review the material in Reference 1.

In this report many idealizations are introduced in order to develop a 
mathematically tractable model.  Consequently, many of the observed features of 
differential sticking are not predicted by the model.  On the other hand, some new insight 
into the differential sticking problem is offered by this idealized model.  Some of the 
idealized features of this model are,

1. Owing to the diameter ratio of the cable to the bore hole being small, the borehole
wall is modeled as flat with the cable resting upon and in contact with it.

2. The filter cake is modeled as a frictional (Mohr-Coulomb), porous material, see 
Reference 2), with a constant friction angle and a uniform permeability.

3. The filter cake material is assumed to satisfy its failure criterion everywhere.  This
assumption is thought to be plausible while the filter cake is building

4. The cable drag force per unit length associated with the capstan effect ( = (cable 
tension) / (bore hole axis curvature)) is not included in the analysis.  Clearly, this 
influence can be added to results presented here.

5. The coefficient of friction between the cable surface and the filter cake is assumed
to be constant.

6. Gravity effects in the fluid and filter cake are ignored as contributions are small 
compared to fluid pressure influences in this study.

7. The solid particles of the filter cake are incompressible and their elastic strains are
neglected.
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2  NOMENCLATURE

                   = friction angle for filter cake material
             = (filter cake thickness) / (cable diameter)

      FV = force per unit length on cable toward bore hole contact by filter cake 
    radial effective stress

      FV           = force per unit length on cable toward bore hole contact by filter cake
    shear stress

      FpV           = force per unit length on cable toward bore hole contact by fluid 
                           pressure
      F = total force per unit length on cable from contact with filter cake

DFV = FV /  pp)(pmr2  , dimensionless
DFV = FV /  pp)(pmr2  , dimensionless
DFpV = FpV /  pp)(pmr2  , dimensionless
DF = F /  pp)(pmr2  , dimensionless

CABLE       = coefficient of friction between the cable and the filter 
 = angle sometimes used to define frictional material, not used here

      r                 = radius of cable
                      = ccw angle from negative z-axis to cable tangent

            = generic angle measured cw from positive z-axis
O, O = angles  and  on cable cross section at top of filter cake
pm = uniform fluid pressure inside the bore hole and filter cake
pp = pore pressure at the bore hole wall
thk = filter cake thickness
p() = fluid pressure on cable wall at angle 
 ordered principal stresses, 
mean = (
radius 
V() = normal effective, compressive stress in z-direction
() = normal effective. compressive stress perpendicular to z-direction
() = normal effective, compressive stress from filter cake on cable wall at 

   angle 
() = shear stress from filter cake on cable wall at angle 
CABLE = coefficient of friction between the cable surface and the filter cake 
                     material
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3  DESCRIPTION OF FRICTIONAL MATERIAL

The frictional material model employed here is described in Reference 2.  The 
total stress (actual force per unit area) is the sum of the pore pressure and the effective 
stress.  The mechanical response of the filter cake is determined using the effective stress 
and is independent of the fluid pressure.  A non-trivial, inelastic deformation is possible 
only when the material stress state satisfies the failure criterion.  This criterion is met in 
the Mohr circle sketch below.

 

The failure criterion is satisfied when the radius of the largest Mohr circle contacts the 
failure line (point A in the sketch).  Material deformation may occur when the failure 
condition is satisfied.  The largest Mohr circle may not cross the failure line.  If material 
deformation occurs it must be shearing on the planes determined by point A and in the 
direction of the shear stress at Point A on these planes.
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cable cross section, radius = r

thk =  thickness

pm  =  mud pressure

filter cake

bore hole wall

pp = pore pressure at bore hole wall

4  ANALYSIS

The sketch below shows the configuration of the model studied in this report.

This study includes the above configuration and the case where the cable is fully buried 
by the filter cake (thk > r2  ).  Consequently, two mathematical derivations are required. 
The pressure and effective stresses in the filter cake remote from the cable have the same 
mathematical solution for any filter cake thickness.  Let z be the coordinate measured 
inward from the bore hole wall and perpendicular to the bore hole wall.  The pressure and
effective stresses in the filter cake remote from the cable are given by,

 
thk

z
pp)(pmpppressurefluidzp 

         1

  




 

thk

z
1pp)(pmwallholeboretostresseffectivenormalzσV          2

    




 

thk

z
1pp)(pmsin(φi21wallholeboretostresseffectivenormalzσH
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Equation 3 is derived based on the assumption that all points in the filter cake satisfy the 
failure criterion and that,

    




 

thk

z
1pp)(pmsin(φi1stresseffectivenormalmeanzσmean          4

         
Equations 1-4 are used below to determine the loading on the cable from the filter cake.  
The pressure and stress distributions are assumed to be valid up to the boundary of the 
cable.  Under this assumption, the normal effective stress and shear stress on the cable 
surface are shown in the figure below and.
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local tangent to cable
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filter cake thk

r





p()

z

cable cross section

formation idealized bore hole wall

  

 

 = (thk) / (2*r) < 1

4.1  FILTER CAKE THICKNESS < CABLE DIAMETER

The sketch above shows the parameters z (measured from the idealized bore hole 
wall), thk, , , O, O and  used for this part of the analysis.  The pressure and 
pertinent effective stresses in O >  > -/2 are,

     
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sin1
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
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
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
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sinOsin
pppmN          9

and

     OO  sin15.05.0cos15.0         10

The above pressure and effective stresses are used to evaluate the following 
dimensionless forces for thk r2  .

DFV = FV /  pp)(pmr2   = 
   

dα
pppm

sinσπ/2

αO

N 




 
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4.2  FILTER CAKE THICKNESS > CABLE DIAMETER

The sketch above shows the parameters z (measured from the idealized bore hole 
wall), thk, , O and  used for this part of the analysis.  The pressure and pertinent 
effective stresses in  >  > -/2 are,
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The above pressure and effective stresses are used to evaluate the following 
dimensionless forces for thk r2  .

DFV = FV /  pp)(pmr2   = 
   
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DFpV = FpV /  pp)(pmr2   = 
   
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 
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SOME GRAPHICAL RESULTS

The forces per unit length acting on the cable must vanish in order to satisfy the force 
equilibrium conditions.  Owing to the symmetry of the model, the forces perpendicular to
the cable axis and parallel to the idealized bore hole wall all vanish.  In addition, 
symmetry ensures that that there is no moment per unit length about the cable axis. The 
above figure gives the vertical contributions to the force on the cable from pressure and 
wall stresses.  It may be verified that the sum of FV, FV and FpV is zero so the 
solution considered here satisfies all equilibrium conditions.
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local tangent to cable
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CRUDE ESTIMATE OF CABLE DRAG FORCE PER UNIT LENGTH

The stress states depicted in Equations 7, 8 & 9 on Page 6 and Equations 15, 16 &
17 on Page 8 are in the failure state and, by assumption the material continues to be in the
failure state.  The vertical, compressive, effective stress is greater than the other two 
principal stresses which are equal to one another.  When an axial load is applied to the 
cable attempting to slide the cable relative to the filter cake, a shear stress parallel to the 
cable axis on the inclined face on Page 6 is required to resist potential sliding.  This may 
be accomplished by changing only the principal effective stress parallel to the cable axis. 
It must be changed to equal the vertical, compressive, effective stress.  This change may 
be visualized using the sketch on Page 3.  Before the axial load is applied, 1 = 2 < 3 
while application of the axial load moves 2 to equal 3 so that the failure criterion is 
reached when 1 < 2 = 3.  This change implies a possible discontinuity in the 
circumferential stress that is acceptable for the ridgid-frictional material model.  The 
result of the new stress state is that the vector labeled N on Page 5 now is perpendicular 
to the sketch as shown below.

The effective normal and shear stresses on the cable surface for the new stress state have 
the same magnitudes as those on Page 5.  That is,

        α2cossin1
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σ
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This is not a possible state for cable sliding based on shearing in the material according to
the frictional material formulation.  In general, the boundary stresses from equations 22 
and 23 do not correspond to Point A indicated in the sketch on Page 3.  The direction of 
sliding must be axial so that all points on the cable boundary must have N() and N() 

values at Point A.  This condition requires that 
 
   tan
ασ

ατ   or, using Equations 22 

and 23 and a little trigonometry,

2

π
α2         24

Since  varies with position on the cable surface and  is a constant, Equation 24 cannot 
be satisfied by the stress state given by Equations 23 and 24.  Clearly, the solution to this 
problem is more complex than the simple stress fields considered here.

The assumption that the filter cake meets the failure criterion everywhere and that
during cable axial sliding the size of the region undergoing shearing around the cable has 
a small radial thickness can be used to make a crude approximation to the axial load per 
unit cable length required to initiate sliding.  The assumption concerning a small radial 
thickness is based on the solution of the equilibrium equations with uniform pressure and 
all stresses dependent on radial position only.  In this case rz varies inversely with r.  
This approximation uses the product of the radial stress at the cable surface from 
Equation 22 and tan() to estimate the axial shear stress on the cable surface at incipient 
slipping.  When this is integrated over the cable surface the resulting force is found for 
having the frictional material undergo shearing.

The crude approximation described in the preceding paragraph includes an 
implicit assumption that the axial load on the cable can be reached before slippage 
occurs.   The possibility that the coefficient of friction between the cable and the filter 
cake, CABLE, is not high enough to prevent cable slippage relative to the filter cake before
the crude approximation load is reached must be recognized.  This possibility may be 
taken into account by the following formulation.

DDRAG =  pp-pmr2

sliding) initiate length tounit per  force drag cable (axial


               =    DFσtan,μMIN CABLE         25

where   tan,μMIN CABLE  equals the minimum value of CABLE and tan().  The plot 

below shows the dependence of DF on 
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Finally, the earlier result that the sum of FV, FV and FpV equals zero is no 
longer valid as the direction of the cable wall shear stress has changed direction.  There is
a force per unit length of FV + FpV acting on the cable normal to its axis.  The plot 
below gives this force per unit length in dimensionless form.
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The above figure can be used to find the lateral load per unit length on the cable from the 
bore hole.  This load should be added to the capstan load effect ( = (cable tension) / (bore 
hole axis curvature)) to obtain the total lateral load per unit length between the cable and 
the bore hole.  This load should be multiplied by the coefficient of friction between the 
cable and the bore hole and the result added to the drag load obtained using the top plot 
on Page 13.
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