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CLASSICAL THERMODYNAMICS
by Paul Paslay, P.E. #44278
FIRST LAW

Define a system as a fixed mass enclosed in a single surface boundary

THE SYSTEM

AE = change in internal energy of system
W = work done by system
q = heat flow into system

The first law of Thermodynamics is a statement of conservation of energy for a system
undergoing a thermodynamic change.

AE =q-W

In classical thermodynamics the development is simplified by assuming the state of the
system is dependent on only three variables that are related through an equation of state.

Variables and equation of state:

f(P,V,T)=0

where,

P = pressure

\Y = volume

T = temperature, the exact scale to be used is defined later

Define the specific heat at constant V for the system as,



_IE

VTV
Define the specific heat at constant P for the system as,
c @ (E+P -v)|
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The internal energy may be considered as E(V, T) in view of the equation of state so that,

0E 0E
A% aT

Differentiating again with respect to T yields,

JE, _dE .ﬂ| +E|
oT'"  ov|t oT'" " oT!
so that,
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Define the enthalpy, H, as,
H=E+P-V

The Joule-Thompson coefficient, u;t, is defined as,

0T
Wyr = a_P H
Ideal Gas

Temporarily consider the thermodynamic system to be a fixed mass of an ideal gas.
First part of definition of an ideal gas.

Btu
(Ib - mol)-° F
An early experimental result by Joule is adopted as the other part of the definition of an
ideal gas.

P-V=R-T, R=1386
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Joule’s experiment - —|; =0
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In this case,

Therefore E = E(T) and

A C
1 Cy =Cy(T), Cp -Cy =P.8_T|P =R, Cp =C,(T), Y=C_P

v
T T

2. AE =fcv -dT AH =f2cp -dT
T, T,

P
3. For reversible isothermal process q=W =R T~ ln(ﬁ) =R-T- ln(—l)
1 2

i dT dv
4. For reversible adiabatic process W=- f Cy -dT Cy T +R 7 =0
T

T
If, in addition, Cy is constant C,, -ln(?z) + R-ln(&) =0 P -V,'=P,-V,’
1 1



SECOND LAW

Return to considerations of the general case (not necessarily an ideal gas).

Carnot (reversible) engine
T2
q
W=gq,-q,
d
T1
e = efficiency = — = 279 __ 4
d; D) 92

Consider two identical Carnot engines running in opposite directions. Unless they have
same efficiency a perpetual motion can be built. Therefore,

7 q
e=f(T1,T2) _1=f(T19T2)
q,
For a general gas running to produce W > 0
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Py, Vi to P,, V, is areversible isothermal expansion at temperature T,
P,, Vo to P3, V3 is areversible adiabatic expansion to temperature T

Ps;, V3 to P4, V4 is areversible isothermal compression at temperature T,
P4, V4 to Py, V) isareversible adiabatic compression to temperature T,

Ts
ds
Ts
W;=dq;-q,
a, %
T, W=W,+W, W=q;-q,
=d:— 4 q
d, 1
T
W,=dq,-q, !
d,
T,
From left Carnot engines, From right Carnot engine,
92 = f(Tz’T3)
d;3
q
_1=f(T19T2) &=f(T1,T3)
2 CE]
q
—L = f(Tl T, ) f(TzaT3 )
ds
The two conditions are equivalent, therefore,
f(T,,T;) q
f(T), T3) = f(T), Ty) " f(T), T3) = £(T,,T,)=—1224=2L
f(Tz Ty ) b

F(T
Note that f(T), T,) is independent of T3 so that — 4 _ f (T1 , T, )= ( 1 )
9, G(Tz

g

LR | F() )

o(t,) " 6(r) o(r,) o(t,)-F(T.)

Now choose F(T) =T so that T is the thermodynamic temperature scale and,



4 f(T19T2)= L
q: T,

When the temperature is defined this way it is called Kelvin’s thermodynamic
temperature scale.

Before using the ideal gas law, it is necessary to check to see if the temperature in this
law is consistent with the above definition of temperature. Therefore, return to the ideal
gas law temporarily. Calculate W and q for each of the four parts of the Carnot cycle.

Isothermal expansion: W, =q, =R"T, -ln(%)

1
T.

Adiabatic expansion: W, = f Cy-dT q=0
TI

Isothermal compression: W;=-q,=R"T, -ln(%)
3

T2
Adiabatic compression: W, =- f Cy-dT q=0
T

W=W;+W,+W;+W, = R-Tz-ln & +R-T1-ln &
Vi \E

. . T, . vV, V
Using the thermodynamic temperature result, a4 T—l , yields — = —> so that,

q> 2 1 4

W=R-(T, -T, )ln(%) and then

1

.. T, -T
e = efficiency = E =2 1
q2 T,

This result for efficiency is the same as the earlier definition so the temperature in the

ideal gas law is on a thermodynamic temperature scale.

Returning now to the general case, a common definition for the Second Law of
Thermodynamics is that for any reversible engine.

dq _ .
e j? dS =0 where S is the entropy



and for any engine that is not reversible,

fd—q<0 e.g.q—2—$<0

The above equation is known as the Inequality of Clausis.

Return again to the ideal gas to determine some expressions for entropy.

dg=dE+P-dV =Cy -dT+ X L .gqv
gs=94_¢ 4T g4V
T T %

If Cy is constant,
T
T Vi

If V is constant also,

T
S, -8, =Cy -1n(T—2)

1

If, instead, the change is isothermal,

S, -S,=R:In A/] =R-In il
1 P,



EQUILIBRIUM CONSIDERATIONS

First, an isolated system is defined as having W = 0 and q = 0 as shown below.

DEFINE ISOLATED SYSTEM

W=0

UNIVERSE

irreversible path

ible path i -
reversiole patn 3 (isolated system)

(not necessarily)
Isolated system)}

S,

For this cycle, recalling the Inequality of Clausis,

S, S

2 dq 1 dq
f _| IRREVERSIBLE T f _|REVERSIBLE <0
S T S T

1 2

The first integral must vanish since ¢ = 0. The second integral equals S; — S,. Therefore,

Si—=S><0 or $-S;>0



This shows that, whereas the energy of the universe is constant, the entropy of the
universe is approaching a maximum. An isolated system may also be defined as having
E and V constant.

Consider a spontaneous change in an isolated system. It must be accompanied by AS > 0.

Equilibrium is defined as the state where no spontaneous changes occur. From this two
equivalent equilibrium criteria are deduced. They are,

1 At constant E and V the entropy is maximized.
2 At constant S and V the internal energy is minimized.

Although these are valid, they have limited use. The second criterion is applied for
spring-mass systems in mechanics thus leading to the minimum energy theorem.

The above two equilibrium conditions are not too useful in chemistry. Now get two more
equilibrium related results that are widely used. Let,

A = work function or Helmholtz free energy=E—-T S

F = thermodynamic potential = free energy = Gibbs free energy=H—-T *S
F=A+P'V

For a constant T reversible change,

AA =AE -T-AS=-W,;,x

For a real system,

W < Wmax

For a constant P reversible change,

AF=AA +P AV

if this change is also a constant temperature change,

AF = =W ux + P-AV = = Wr

Most laboratory experiments (electricity excluded) in chemistry are performed under

conditions of constant T and P such that Wxgt = 0 so that AF = 0. Since AS >0 or AH <
0 cause AF < 0 another equilibrium condition is determined.



The two new equilibrium conditions are,

1. At constant T and P: F at equilibrium is a minimum
2. At constant T and V: A at equilibrium is a maximum

10
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DETERMINATION OF PROPERTIES FROM EXPERIMENTAL RESULTS
dF=dE+P-dV+V-:dP-T-dS-S-dT

dE=T-dS-P-dV

so that,

dF=V-dP -S-dT

dF dF
—|r=V and —|, =-S
oP oT

2
For an isothermal change, @AF=F,—-F,= f V-dP so, given an equation of state, if F
1

is known at one pressure it can be found for any other pressure. For the case of an ideal

gas, AF = R-T-ln(P—z)

Pl
For a change at constant pressure

oF F-H
S=

—lp == [

oT T

if, in addition, the change is at constant temperature,

d AF AF - AH
—|p==AS=—"—
0T

this equation is called the Gibbs-Helmholtz equation and it may be converted to the form,

%)
: |p =AH
Jl —
g

Thus the slope of the plot of % versus % is equal to AH as shown below.



curve measured for constant P

AR
T

slope = AH

L
T

Other relations between the thermodynamic variables can be derived using the
Gibbs free energy function, F. Consider the identity,

9 (9F) _ 9 (dF
oPloT '™ oT| 9P

o oF dF
Since it has been shown that a_P| =V and a_T| p =—3S there results that,

dS LAY

—|r ==

oP T '*

so at constant temperature,

P, 9 P,
AS = — R I P= — . -dP
S }[ pral d }[ o Vg d
This integration can be performed if the equation of state is known. In the case of an

ideal gas we already have shown that AS=R - ln(ﬁ) =R- ln(II:—l)
1 2

At constant pressure,

T,
=d_q=d_H=M — AS = &-dT
T T T T

T,

ds
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At constant volume,

T,

_dq _dE_Cy-dT AS=fC—V-dT
T T

T T T

ds




SUMMARY OF THERMODYNAMIC VARIABLES

H=E+P'V Enthalpy
A=E-T"'S Helmholtz free energy or work function
F=E+P"'V-T"S Gibbs free energy or thermodynamic potential
dE=T dS-P"dV
dH=T'dS+V " dP
dA=-S'dT-P"dV
dF=-S°dT+V " dP
95 24
ov'"aT!Y
8 _av
oP'" ot !"
dq aS
C.=—1] —1.22
’ dT|P aT'"
dq aS
Cy=—|y=T—
Vo' aT|V
dE aP
—I|; +P=T-—
v’ aT 'Y
oH A%
| -V==T--=
ap '’ aT '*
-9V v
0T o LaH T
Y. ap M C, oP T C,
1 oV

R
vV, oT'"
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THERMODYNAMIC CONSIDERATIONS FOR MATERIALS
INTRODUCTION

A requirement from physical science is that any theory must conform to the
general results from Thermodynamics. The purpose of Section VI is to tie the results
given above to Classical Thermodynamics and to determine any constraints that must be
imposed on constitutive equations in order for them to conform to Classical
Thermodynamics. A brief review of Classical Thermodynamics is in an appendix
included at the end of this work.

In the case of a Continuum Mechanics formulation the system is a fixed mass
particle so that the stresses and strains may be considered uniform. The first essential
part of the Appendix concerns the First Law of Thermodynamics for fixed mass systems
which is expressed as,

q=E+W
where,
q = time rate of heat flow into the system from its exterior
= T-¢ for a reversible process
E = time rate of change of internal energy
W = time rate of work being done by the system on its exterior

In addition, define,

T = absolute temperature
S = time rate of change of entropy
P = mass density

When a specific constitutive equation is considered, it is often possible to
determine W explicitly. Substituting W into the first law and solving for § yields an
equation whose validity must be determined. The condition that s be a perfect
differential (i.e. s is a property dependent only on the state of the material) leads to a
condition that must be satisfied by E. When this condition is satisfied then the Inequality
of Clausis is valid and it becomes a way of expressing the Second Law of
Thermodynamics as,

d?qu?dszo

where the inequality becomes the equality only for a reversible cycle.
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A special, important result from Thermodynamics is that an equilibrium condition
is defined. This is accomplished by considering an isolated system (q and W are both
zero) and showing, based on the Inequality of Clausis, that any spontaneous change of the
thermodynamic properties will result in an increase in entropy of the system.
Equilibrium is defined as a stable state where no spontaneous change occurs in an
isolated system and it implies that E will be a minimum in this state. For small deviations
in the thermodynamic properties from the state being considered the conditions,

SE=0 and 8’E>0

must be satisfied where SE and 8°E are the first and second variations of E. It is noted
that the usual stability calculations concerning buckling of beams and other structures is
not covered by these considerations although the thermodynamic results can be extended
to cover structural stability.

Several common, elementary, constitutive equations are reviewed in the section
below. In each case, the expressions for E and § are determined as well as investigating
the conditions for an equilibrium state. In each case, the derivation is given in spatial
coordinates. These reviews show the kind of restrictions thermodynamics imposes on
constitutive equations.

SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS
LINEAR THERMOELASTICITY

The constitutive equation relates the strains, ej, stresses, sj, and absolute
temperature, T, as,

ji =p-7:-(ekk —3»-01-(T-T0))-6ij +2-p-(ﬂ}-(eij —a-(T-TO)‘Sij]

where in terms of Young’s modulus, E, and Poisson’s ratio, v,

'71= V'E

P vy a-2v)
- E

PG = 2-(1+v)

and

a = thermal coefficient of linear expansion
p = mass density, a function of e;j and T
To = a constant reference temperature
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The parameters 5», G and o are constants so that, up to this point, E and v are functions of
ejand T.

The thermodynamic system under consideration is a particle whose mass is
constant. The rate of work done by this particle is,

Now assume the internal energy, E, is a function of e;; and T so that,

_ﬂ.é“ +ET

E_ i
ge, U oT

and the Thermodynamic First Law gives,

In order that s be a state function, the following condition must be satisfied,

O L [9E i) _ 0 (1 9E
JT| T {de; p de; \T aT

which gives,

When the thermoelasticity constitutive equation given above is substituted into this
condition, the result is,

ij
ae;;
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. dE .
Integration of e gives,
ij

E=%-i-(ekk)2 +CA}'eij ey + 6-i+2-G)a-TO “Cx +H(T)

then,
q=6-i+2-f})a-T-ékk+aH(T)-T
. - -\ . OH(T) T
=B1+2-G . el Sl

S 6 + )oc € + T

In order to relate H(T) to a physically familiar quantity, note that T is an independent
thermodynamic property and when the strain rates are zero the value of q is,

dH(T)
9T

&j=0

Foey T

where cy is the specific heat at constant volume and assumed to be constant. Then. H(T)
may be written as,

H(T)=c, - (T-T))

where T is a constant of integration. Consequently, E may be written as,
E =%-7Av(ekk)2 + G-eij ‘e +Cy (T-T))

and,

q=(§-i+2-é)a-T-ékk +cV-T
s=(z-i+2~é)a-ekk +cv-%

In the case of linear thermoelasticity the constitutive equation is linearized with
respect to the strains and the temperature. This process causes the value of p to be a

constant in the constitutive equation and then E and v are also constants in accordance
with the usual thermoelastic theory.

When this constant mass thermoelastic system is isolated, the first variation of E,
OE, vanishes since E vanishes and the second variation, 62E, is positive definite as the
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quadratic quantity %-X-(ekk)z +G-e; ey is positive definite in ej. Consequently, the
system is stable.
The temperature, T, is the absolute temperature in the above derivation. When the

constitutive equation is used in problem solving, it is common to replace (T-To) with a
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius).

LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

The constitutive equation for this fluid may be written in terms of the stress, o,
the strain, e;;, the strain rate, €,, and absolute temperature, T, in the form,

ij°

oy = prh-éy 81j + 2'P'ﬁ'éij 4 P’C‘(ekk _ 3-(1-(T _ To))'sij

where,

A and i = volumetric and shear viscosities, constant material properties
C = elastic compressibility, constant material property

a = thermal coefficient of linear expansion, a constant

p = mass density, a function of ey and T

To = a constant reference temperature

This case of a fluid introduces new considerations to the determination of the internal
energy and the entropy functions. The presence of a viscosity implies that there is a
dissipation of energy within the material element owing to flow. When the system is
dissipative the entropy function cannot be derived using the constitutive equation in the
same way as given in the case of the thermoelastic material. By assuming that E is a
function of e;,¢; and T and proceeding in same way as the thermoelastic material
derivation shows there is no entropy function that is a state variable. When dissipation is
present it is converted to heat and this must be reflected in the contributions to the first
law. This may be accomplished in this case by splitting the stress into two parts, oD;; and
oS;j. The stress , oDjj, 1s determined from the part of the constitutive equation causing
dissipation while the stress, oS;;, is determined from the part of the constitutive equation

contributing to the recoverable elastic strain energy as follows,

oDjj =p-A-€y 0 +2-p-p-¢y
GSU =p'C'(€kk —3'(1'T)'61j
oS, -¢;

y "y

p
energy, E, is a function of eix and T so that the first law gives,

The rate of work being done by the system is — Assume the internal
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. oE . dE . OS;-¢j oE oS5 JE
q= = : Cij

g +— T - ;i — & +—T
K aT

0€ dT p dey p

and the entropy production rate, §, is

i .

. 1 (0E oS;y . OE T
S=—- 0y — "€ +
T | dey, p OT T

In order for the entropy to be a state property,

oS 2 oS 2 2
_L.(OE.SN_ ‘J]+l-(aE-5.. a_( U))=%.8E=%.6E 5

T2 loey, ° p | T |0Toe, ° oT| p de 0T e T

Assuming the order of differentiation for the second derivatives are interchangeable, the
equation becomes,

d (Gsij]_csij _JE

o - 81j
aT{ p p 0€

When the constitutive equation for oS;; is substituted into the above equation, the result
1S,

0E

=C-(ey +3-0-T,)
0€

The last equation is integrated to give,

E=C-Leg’ +3-0-Ty e Jr J(T)

where J(T) is an arbitrary function of T. When E is substituted into the expressions for
heat flow rate and entropy production rate given above, the expressions become,

. - . dI(T) .
-3-0-T-C- T
q o € + T
s=3'a'6'ékk _,_dJ_(T)I
dT T

When ¢,, = 0, the heat flow rate is usually written as c,, - T with cy being the specific
heat. In this case,
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dJ(T)
_ L = CV
dT

When cy is a constant, integration yields,
I(T)=cy-(T-T))

where T is a constant of integration. To summarize,
q=3-aT-C-éy +cy-T

-

s=3-0-C-éy +cy "=

E= é-ekkz +3-6-a-TO "€ T Cy -(T—Tl)

1.
2

The value of g in these equations is the total heat flow rate for the system and some is

generated internally while the remainder is supplied externally to the material element.
The internal heat flow rate, q, is,

. oDy-¢y . Y
dp =%= (X'ekk "0y +2'H'eij)eij

Now let the externally supplied heat flow rate be q so that,
q= f] +dp

and,

G=3-a-T-Céy +oy - T-Aéy’ —2-1-¢;-¢
ELASTIC, PERFECTLY-PLASTIC SOLID
The formulation investigated here is the one appearing in the text, Theory of

Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons,
Inc., 1951). The von Mises stress, Oy, 1s defined to be,

6o =g 6. LG 2
VM ~ \/2 ij ij 2 kk

and possible stress states must be such that,
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cSVM = csYP

where oyp is the yield point of the material, a constant. The strain is split into two parts.
The elastic strain, eEj;, is directly related to the stress state while the plastic strain, ePj, is
adjusted to be proportional to the reduced stress, 6; — 36, -8;. The total strain rate is
the sum of the elastic strain rate and the plastic strain rate, €E;; + ¢P;. The relationship

between the stress and the elastic strain is,
o = ()‘X-eEkk - (5-p-7:+2-p-Cv})0c-T)8ij +2~p-CV}-eEij

where the material parameter nomenclature is the same nomenclature used for the elastic
material considered above. The plastic strain changes over a loading increment when
Oyy = Oyp during the increment. This change is expressed by,

epP; = F-(cij - 310y -SU) while 6y, =0
eP. =0 otherwise

where I must be adjusted so that ¢,,, =c,,. Note that ¢P,, =0 so that the plastic

strains cause no rate of volume change. The rate of doing external work for the elastic
strain is assumed to be recoverable while the rate of doing work for the plastic strain is
assumed to be dissipated into a heat flow rate within the material element. Define these
as,

. Gl’eEl ~ ~ . ~ A
W, =—%=_(X'6Ekk - 6-%+2-G)a-T)eEkk —2'G‘eEij 'eEij
. Gij'éPij = 1 :

Wp = _T=_2'G’6Eu Too; — oy ;) while oy, =0,
W, =0 otherwise

Now assume that the internal energy, E, is a function of the elastic strain, eE;;, and
the temperature T. For this material the first law is written as,

q=E+WE

so that,
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B aill;ij_(X‘eEkk—(3‘7»+2-G)“'T)51j‘2'G'eEij ’éEijJr%.T
and,
S=%.(%EEU_($,6E&_(Q,.mz.(})aq)sij—z.é.eEij .éEij+%.%-T

In order for the entropy to be a property,

_le( o ‘@'eEkk ‘6‘X+2'G)“‘T)Sij ‘Z’G'eEij

+;( O°E +(’:'X+2~G)a'6ij

deE;; 9T deE;;
_1 _¥E
T deE; T

As usual, the order of differentiation of the second derivatives is assumed
interchangeable so that,

0E

=L-eEy -3; +2-G-eE;
aeEij kk ij ij

When this equation is integrated there results,

and,

4=6-7+2-G)a-T-¢Ey +—d1§§T)-T

. = =Y 1 9K(T) .
=B1L+2-G -¢E _ . -T
S 6 + )(1 [ kk+T 9T

Now define a specific heat at constant volume, cy, using,

q By — Cv T
to obtain,
_dK(T)

“vVETar
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where, obviously, cy is a function of temperature only. The heat flow rate and entropy
production rate may be written as,

q=06-7+2-G)a-T-¢Ey +cy T
S=6-X+2-G)a-éEkk +%'CV'T

Similar to the case for a fluid, the quantity q is the total heat flow rate in the material
element. The quantity WP is the rate of work for the plastic strain that is converted to a

heat flow rate. Let q be the externally supplied heat flow rate so that,

Al

INCOMPRESSIBLE BINGHAM MATERIAL.

The most common formulation neglects thermal expansion and elastic behavior of
the material and this approximation is employed here. This material has a yield point
stress that must be exceeded before the material can deform. When the yield stress is
exceeded, the material flows similar to a fluid but with the flow rate proportional to the
excess of the stress over the yield point stress. Let,

6o =% 6.6.-L-g. =2 J5. 6. -L-6.2 =31
VM T\ 2 ij ij 2 kk T V2 ij ij 3 kk T VM

where oy 1S the von Mises stress in tension and Tty 1S the von Mises stress in shear.
The yield point stress in shear is denoted by tTyp and it is the value of the von Mises stress
in simple shear that causes yielding of the material. For this material it is common to
formulate the constitutive equation in terms of the constant value of Typ. The constitutive
equation for the incompressible Bingham material is.

Oym V3 Ty (

2-p-e, = Gij—é-okk-ﬁij) when oy, = /3 1.,

ij
Ovm

2:pu-e;=0 otherwise

When this material undergoes deformation, the entire rate of work done by the stresses is

converted to a heat flow rate. Consequently, in the first law W =0. In addition, the

internal energy is assumed to be a function of temperature only. Under these conditions,
the first law becomes,

oE .
. _9E
a T
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and the entropy production rate is,

JE . .
Clearly, T may be interpreted as the specific heat at constant volume, cv, so that,
q=cy T
) T
S=Cy" ?

G "€,
During deformation, the quantity -—— is the heat flow rate internal to the material

element and,

Gij.éij = oM = Sty '(ﬂj'cij _%'Gkkz)z @VM _\/g'TYP)GVM , Oyum 2\/5'1?\(1’
p 2:p-Oyy 3-pu

so that the externally supplied heat flow rate, q, is,

~ - -3
Cl=cv'T+@VM {p?JP)GVM , Gy =3 Typ

q=cy T , otherwise

Owing to the assumption of incompressibility the mean stress, -0, , is indeterminate
from the deformation. A similar situation occurs in the case of any incompressible
material..

PENG-ROBINSON CUBIC EQUATION OF STATE

This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations. For a specified state (vapor or liquid) the equation
contains three constants, R, a and b. It relates the pressure, p, to the specific volume, v,

and temperature, T, as follows,

_R-T a
v-b Vv +2:b-v-b?

p
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For this case assume the internal energy is a function of the specific volume and the
temperature, E = E(v, T). The first law yields,

=g i 2

av JT
and then,
. q 1 (0E . OE T
S=—=—|—+p|'V+—"=
T T \ ov JoT T

In order for the entropy to be a state variable,

-1 (9E 1 (0°E adp) 1 9°E
_2. _+p +_. +_ _ .
T v T |oTov 0T T ovoT

Assuming the second derivatives are independent of the order of differentiation gives,

E+p_T.a_p=O
ov oT

When p is eliminated from this equation using the equation of state, the result is,

GE__

v vZ+2-b-v-b?

and integration gives,

. . — . 2
E = a -In 2:v+2-b \/8 b +L(T)
8-b* 2:v+2-b++/8-b?

so that

fRT o, dL(T)
v-b dT

The multiplier of T is the specific heat at constant volume, cv, so the heat flow rate and
entropy production rate become,

R-T

V_

V+cey, T

q:
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q R
T v-b

S = "VA4Cy

VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)

The sketch below is a conceptual description of this material. Although it is
helpful to represent the physical characteristics of the material with this sort of sketch, D.
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics,
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations
of such sketches.

oE;; = elastic stress

o, =stress =OE; + oV
—_—

oV;; = viscous stress

SNOANNANN

The contributions to the stress, oE;, and oVj, are taken as the classical
formulations for thermoelastic and viscous materials. The external work is associated
with oE; only as the work associated with oVj; is dissipated as heat in the material

element. The total stress is the sum of the two contributions so,

oE;; =p 2oy —3'a'T)'8ij +2'p'G'(eij _a'T'é‘)iJ'J

The internal energy, E, is assumed to be a function of oE;; and T only. The work term is

taken as — and then the first law becomes.
[
oE oE; 0E
(a— ] stor T
ij p

and
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. q 1 (oE oBy)  9E T
S=_=_. — e = .ei.+_-_
'9T T

The condition that must be satisfied in order that the entropy, s, be a state variable is,

-1 (9E oBy) 1. (0°BE o (oBy)) 1 9°E
T> |de; p ) T |9Tade; oT| p T de;dT

Assuming the order of differentiation for the second derivatives may be interchanged,
this condition becomes,

9E oE i T a_ oE i
oe.. p oT{ p
When the constitutive equation is substituted into this condition, the result is,

ae;;

and integration gives,
2
E=3-ke, +Greje+ M(T)

with M(T) being an arbitrary function of temperature. Recognizing that the specific heat
at constant volume, cy, is related to M(T) through,

dM(T)
_ = CV
dT

yields,
q=0B1+2:G)a-T-é, +c, T
T

§=0BL+2:G)a-é, +cy T

p

Since the internally generated heat flow rate is — , the external heat flow rate, q,

is given by,
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GVU * eij

q=q+ =g+ héy’ 2 g€y
=B A+2:G)a-Téy +oy T+h-gy’ +2-1-¢;-¢;
MAXWELL MATERIAL
The sketch below gives a conceptual, physical understanding of the Maxwell

material. The strain has separate elastic and viscous components, ¢E;; and eVj;, that are
induced by the total stress, oj;.

©

m
L)
<

The analytical model developed here uses classical definitions to relate o, eE;
and eVj; as follows,

)
oy =P'7V(eEkk _3.a.T).5ij +2‘P'G'(eEij —a-T'Sij)

and the total strain rate, €., is defined as,

ij

ey = eEij + eVij

c..-¢E.
The external rate of work is — — L while the internal rate of work that is converted
p
) Gj *eVj . . )
to heat flow rate is — and the internal energy, E, is assumed to be a function of
p

eEjjand T only. The first law is,

o .
q=( OE __U).éEij +E-T

deE; p T
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and

aT T

The condition that entropy be a state variable is,

_L (2B o) L OB 0 (o)) 1 E_
T> |deE; p | T |dTaeE; oT| p T 0eE;oT

With the assumption that the order of differentiation may be interchanged, this equation
becomes,

Substitution of the constitutive equation into this equation gives,

0E
deE;;

=A-eEy, -6, +2-G-¢eE;

and integration leads to,

E=1-%-¢E,” +G-¢cE, eE; + N(T)

1.
2

The function of integration, N(T), is related to the specific heat at constant volume, cy,
through,

dN(T)
YVETAT

so that,

q=0BA+2-n)a-T-¢E, +c, T
: : T
§=0BL+2-pn)a¢E, +cy T

The external heat flow rate, a, is the difference between the total heat flow rate, q, and

. ;i - €E;;
the internal heat flow rate, — , so that,
p




eV,

Oij "CVjj

q=q+ =g+ heVy” + 28V, -V,
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