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FIRST LAW 
 
Define a system as a fixed mass enclosed in a single surface boundary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first law of Thermodynamics is a statement of conservation of energy for a system 
undergoing a thermodynamic change. 
 

 
 
In classical thermodynamics the development is simplified by assuming the state of the 
system is dependent on only three variables that are related through an equation of state. 
 
Variables and equation of state: 
 
f(P, V, T) = 0 
 
where, 
 
P = pressure 
V = volume 
T = temperature, the exact scale to be used is defined later 
 
Define the specific heat at constant V for the system as, 
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Define the specific heat at constant P for the system as, 
 

 

 
The internal energy may be considered as E(V, T) in view of the equation of state so that, 
 

 

 
Differentiating again with respect to T yields, 
 

 

 
so that, 
 

 

 
Define the enthalpy, H, as, 
 

 
 
The Joule-Thompson coefficient, µJ.T., is defined as, 
 

 

 
Ideal Gas 
 
Temporarily consider the thermodynamic system to be a fixed mass of an ideal gas.   
 
First part of definition of an ideal gas. 
 

 

An early experimental result  by Joule is adopted as the other part of the definition of an 
ideal gas. 
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Joule’s experiment  

 
In this case, 

 

  

 
 Therefore E = E(T) and 
 

1  

2.  

3. For reversible isothermal process     

4. For reversible adiabatic process        

 If, in addition, CV is constant        
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SECOND LAW 
 
Return to considerations of the general case (not necessarily an ideal gas). 
 
 
Carnot (reversible) engine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e = efficiency =  

 
Consider two identical Carnot engines running in opposite directions.  Unless they have 
same efficiency a perpetual motion can be built.  Therefore, 
 

 

For a general gas running to produce W > 0 
, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

P1, V1   to  P2, V2  is a reversible isothermal expansion at temperature T2  
P2, V2   to  P3, V3  is a reversible adiabatic expansion to temperature T1 
P3, V3   to  P4, V4  is a reversible isothermal compression at temperature T1  
P4, V4   to  P1, V1  is a reversible adiabatic compression to temperature T2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From left Carnot engines,   From right Carnot engine, 
 

    

 
The two conditions are equivalent, therefore,  

f(T1, T3) = f(T1, T2) 
. f(T1, T3)  

 

Note that f(T1, T2) is independent of T3 so that   

 

Then    

 
Now choose F(T) = T so that T is the thermodynamic temperature scale and, 
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When the temperature is defined this way it is called Kelvin’s thermodynamic 
temperature scale. 
 
Before using the ideal gas law, it is necessary to check to see if the temperature in this 
law is consistent with the above definition of temperature.  Therefore, return to the ideal 
gas law temporarily.  Calculate W and q for each of the four parts of the Carnot cycle. 
 

Isothermal expansion:   

Adiabatic expansion:   

Isothermal compression:  

Adiabatic compression:  

 

W = W1 + W2 + W3 + W4  =   

 

Using the thermodynamic temperature result,  , yields  so that, 

 

W = and then 

 

 

 
This result for efficiency is the same as the earlier definition so the temperature in the 
ideal gas law is on a thermodynamic temperature scale. 
 
Returning now to the general case, a common definition for the Second Law of 
Thermodynamics is that for any reversible engine. 
 

  where S is the entropy 
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and for any engine that is not reversible, 
 

  e. g.   

 
The above equation is known as the Inequality of Clausis. 
 
Return again to the ideal gas to determine some expressions for entropy. 
 

 

 

 
If CV is constant, 
 

 

 
If V is constant also,   

  

 
 If, instead, the change is isothermal, 
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EQUILIBRIUM CONSIDERATIONS 
 
 First, an isolated system is defined as having W = 0 and q = 0 as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the following cycle for this isolated system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this cycle, recalling the Inequality of Clausis, 
 

 

 
The first integral must vanish since q = 0.  The second integral equals S1 – S2.  Therefore, 
 
S1 – S2 < 0  or  S2 – S1 > 0 
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This shows that, whereas the energy of the universe is constant, the entropy of the 
universe is approaching a maximum.  An isolated system may also be defined as having 
E and V constant. 
 
Consider a spontaneous change in an isolated system.  It must be accompanied by ΔS > 0. 
 
Equilibrium is defined as the state where no spontaneous changes occur.  From this two 
equivalent equilibrium criteria are deduced.  They are, 
 

1 At constant E and V the entropy is maximized. 
2 At constant S and V the internal energy is minimized. 

 
Although these are valid, they have limited use.  The second criterion is applied for 
spring-mass systems in mechanics thus leading to the minimum energy theorem. 
 
The above two equilibrium conditions are not too useful in chemistry.  Now get two more 
equilibrium related results that are widely used.  Let, 
 
A = work function or Helmholtz free energy = E – T . S 
 
F = thermodynamic potential = free energy = Gibbs free energy = H – T . S 
 
F = A + P . V 
 
For a constant T reversible change, 
 

 
 
For a real system, 
 
W < WMAX  
 
For a constant P reversible change, 
 
ΔF = ΔA + P . ΔV 
 
if this change is also a constant temperature change, 
 

 
 
Most laboratory experiments (electricity excluded) in chemistry are performed under 
conditions of constant T and P such that WNET = 0 so that ΔF = 0.  Since ΔS > 0 or ΔH < 
0 cause ΔF < 0 another equilibrium condition is determined. 
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The two new equilibrium conditions are, 
 
1. At constant T and P:   F at equilibrium is a minimum 
2. At constant T and V: A at equilibrium is a maximum 
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DETERMINATION OF PROPERTIES FROM EXPERIMENTAL RESULTS 
 

 
 

 
 
so that, 
 

 
 

 

 

For an isothermal change, ΔF = F2 – F1 =    so , given an equation of state, if F 

is known at one pressure it can be found for any other pressure.  For the case of an ideal 

gas,   

 
For a change at constant pressure 
 

 

 
if, in addition, the change is at constant temperature, 
 

 

 
this equation is called the Gibbs-Helmholtz equation and it may be converted to the form, 
 

 

 

Thus the slope of the plot of  is equal to ΔH as shown below. 
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Other relations between the thermodynamic variables can be derived using the 
Gibbs free energy function, F.  Consider the identity, 

 

 

 

Since it has been shown that  there results that, 

 

 

 
so at constant temperature, 
 

 

 
This integration can be performed if the equation of state is known.  In the case of an 

ideal gas we already have shown that  

 
At constant pressure, 
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At constant volume, 
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SUMMARY OF THERMODYNAMIC VARIABLES 
 
H = E + P . V   Enthalpy 
A = E – T . S   Helmholtz free energy or work function 
F = E + P . V – T . S  Gibbs free energy or thermodynamic potential 
 
dE = T . dS – P . dV 
dH = T . dS + V . dP 
dA = -S . dT – P . dV 
dF = -S . dT + V . dP 
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THERMODYNAMIC CONSIDERATIONS FOR MATERIALS 
 
  INTRODUCTION 
 
 A requirement from physical science is that any theory must conform to the 
general results from Thermodynamics.  The purpose of Section VI is to tie the results 
given above to Classical Thermodynamics and to determine any constraints that must be 
imposed on constitutive equations in order for them to conform to Classical 
Thermodynamics.  A brief review of Classical Thermodynamics is in an appendix 
included at the end of this work. 
 
 In the case of a Continuum Mechanics formulation the system is a fixed mass 
particle so that the stresses and strains may be considered uniform.  The first essential 
part of the Appendix concerns the First Law of Thermodynamics for fixed mass systems 
which is expressed as, 
 

 
 
where, 
 

 = time rate of heat flow into the system from its exterior  
=  for a reversible process 

 = time rate of change of internal energy 
 = time rate of work being done by the system on its exterior 

 
In addition, define, 
 
T = absolute temperature 

 = time rate of change of entropy 
ρ = mass density 
 

When a specific constitutive equation is considered, it is often possible to 
determine  explicitly.  Substituting  into the first law and solving for  yields an 
equation whose validity must be determined.  The condition that s be a perfect 
differential (i.e. s is a property dependent only on the state of the material) leads to a 
condition that must be satisfied by E.  When this condition is satisfied then the Inequality 
of Clausis is valid and it becomes a way of expressing the Second Law of 
Thermodynamics as,  
 

 

 
where the inequality becomes the equality only for a reversible cycle. 
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 A special, important result from Thermodynamics is that an equilibrium condition 
is defined.  This is accomplished by considering an isolated system (  and  are both 
zero) and showing, based on the Inequality of Clausis, that any spontaneous change of the 
thermodynamic properties will result in an increase in entropy of the system.  
Equilibrium is defined as a stable state where no spontaneous change occurs in an 
isolated system and it implies that E will be a minimum in this state.  For small deviations 
in the thermodynamic properties from the state being considered the conditions, 
 
δE = 0    and   δ2E > 0 
 
must be satisfied where δE and δ2E are the first and second variations of E.  It is noted 
that the usual stability calculations concerning buckling of beams and other structures is 
not covered by these considerations although the thermodynamic results can be extended 
to cover structural stability.  
 
 Several common, elementary, constitutive equations are reviewed in the section 
below.  In each case, the expressions for E and  are determined as well as investigating 
the conditions for an equilibrium state.  In each case, the derivation is given in spatial 
coordinates.  These reviews show the kind of restrictions thermodynamics imposes on 
constitutive equations. 
 
  SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS 
 
  LINEAR THERMOELASTICITY 
 
 The constitutive equation relates the strains, eij, stresses, sij, and absolute 
temperature, T, as, 
 

 
 
where in terms of Young’s modulus, , and Poisson’s ratio, ν, 
 

 

 

 
and 
 
α = thermal coefficient of linear expansion 
ρ = mass density, a function of eij and T 
TO = a constant reference temperature 
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The parameters  are constants so that, up to this point, E and ν are functions of 
eij and T. 
 
 The thermodynamic system under consideration is a particle whose mass is 
constant.  The rate of work done by this particle is, 
 

 

 
Now assume the internal energy, E, is a function of eij and T so that, 
 

 

 
and the Thermodynamic First Law gives, 
 

 

 
The entropy production rate, , is, 
 

 

 
In order that s be a state function, the following condition must be satisfied, 
 

 

 
which gives, 
 

 

 
When the thermoelasticity constitutive equation given above is substituted into this 
condition, the result is, 
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Integration of  gives, 

 
 

 
then, 
 

 

 

 

 
In order to relate H(T) to a physically familiar quantity, note that T is an independent 
thermodynamic property and when the strain rates are zero the value of  is, 
 

 

 
where cV is the specific heat at constant volume and assumed to be constant.  Then. H(T) 
may be written as, 
 

 
 
where T1 is a constant of integration.  Consequently, E may be written as, 
 

 
 
and, 
 

 
 

 

 
 In the case of linear thermoelasticity the constitutive equation is linearized with 
respect to the strains and the temperature.  This process causes the value of ρ to be a 
constant in the constitutive equation and then  and ν are also constants in accordance 
with the usual thermoelastic theory. 
 

When this constant mass thermoelastic system is isolated, the first variation of E, 
δE, vanishes since  vanishes and the second variation, δ2E, is positive definite as the 
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quadratic quantity  is positive definite in eij.  Consequently, the 
system is stable. 

 
The temperature, T, is the absolute temperature in the above derivation.  When the 

constitutive equation is used in problem solving, it is common to replace (T-TO) with a 
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius). 
 
  LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID 
 
 The constitutive equation for this fluid may be written in terms of the stress, σij, 
the strain, eij, the strain rate, , and absolute temperature, T, in the form,  
 

 
 
where, 
 

 = volumetric and shear viscosities, constant material properties 
  = elastic compressibility, constant material property 

α   = thermal coefficient of linear expansion, a constant 
ρ  = mass density, a function of ekk and T 
TO   = a constant reference temperature 
 
This case of a fluid introduces new considerations to the determination of the internal 
energy and the entropy functions.  The presence of a viscosity implies that there is a 
dissipation of energy within the material element owing to flow.  When the system is 
dissipative the entropy function cannot be derived using the constitutive equation in the 
same way as given in the case of the thermoelastic material.  By assuming that E is a 
function of  and proceeding in same way as the thermoelastic material 
derivation shows there is no entropy function that is a state variable.  When dissipation is 
present it is converted to heat and this must be reflected in the contributions to the first 
law.  This may be accomplished in this case by splitting the stress into two parts, σDij and 
σSij.  The stress , σDij, is determined from the part of the constitutive equation causing 
dissipation while the stress,  σSij, is determined from the part of the constitutive equation 
contributing to the recoverable elastic strain energy as follows, 
 

 

 

 The rate of work being done by the system is .  Assume the internal 

energy, E, is a function of ekk and T so that the first law gives, 
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and the entropy production rate, , is 
 

 

 
In order for the entropy to be a state property, 
 

 

 
Assuming the order of differentiation for the second derivatives are interchangeable, the 
equation becomes, 
 

 

 
When the constitutive equation for σSij is substituted into the above equation, the result 
is, 
 

 

 
The last equation is integrated to give, 
 

 
 
where J(T) is an arbitrary function of T.  When E is substituted into the expressions for 
heat flow rate and entropy production rate given above, the expressions become, 
 

 

 

 

 
When  = 0, the heat flow rate is usually written as  with cV being the specific 
heat.  In this case, 
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When cV is a constant, integration yields, 
 

 
 
where T1 is a constant of integration.  To summarize, 
 

 
 

 

 
 

 
The value of  in these equations is the total heat flow rate for the system and some is 
generated internally while the remainder is supplied externally to the material element.  
The internal heat flow rate, , is, 
 

  

 
Now let the externally supplied heat flow rate be  so that, 
 

 
 
and, 
 

 
 
  ELASTIC, PERFECTLY-PLASTIC SOLID 
 
 The formulation investigated here is the one appearing in the text, Theory of 
Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons, 
Inc., 1951).  The von Mises stress, σVM, is defined to be, 
 

 
 
and possible stress states must be such that, 
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where σYP is the yield point of the material, a constant.  The strain is split into two parts. 
The elastic strain, eEij, is directly related to the stress state while the plastic strain, ePij, is 
adjusted to be proportional to the reduced stress, .  The total strain rate is 
the sum of the elastic strain rate and the plastic strain rate, .  The relationship 
between the stress and the elastic strain is, 
 

 
 
where the material parameter nomenclature is the same nomenclature used for the elastic 
material considered above.  The plastic strain changes over a loading increment when 

 during the increment.  This change is expressed by, 
 

 while  
 

   otherwise 
 
where Γ must be adjusted so that .  Note that  so that the plastic 
strains cause no rate of volume change.  The rate of doing external work for the elastic 
strain is assumed to be recoverable while the rate of doing work for the plastic strain is 
assumed to be dissipated into a heat flow rate within the material element.  Define these 
as, 
 

 

 

  while  

 
       otherwise 

 
 Now assume that the internal energy, E, is a function of the elastic strain, eEij, and 
the temperature T.  For this material the first law is written as, 
 

 
 
so that, 
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and, 
 

 

 
In order for the entropy to be a property, 
 

 
As usual, the order of differentiation of the second derivatives is assumed 
interchangeable so that, 
 

 

 
When this equation is integrated there results, 
 

 
 
and, 
 

 

 

 

 
Now define a specific heat at constant volume, cV, using, 
 

 
 
to obtain, 
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where, obviously, cV is a function of temperature only.  The heat flow rate and entropy 
production rate may be written as, 
 

 
 

 

 
Similar to the case for a fluid, the quantity  is the total heat flow rate in the material 
element.  The quantity  is the rate of work for the plastic strain that is converted to a 
heat flow rate.  Let  be the externally supplied heat flow rate so that, 
 

 
 
INCOMPRESSIBLE BINGHAM MATERIAL. 
 
 The most common formulation neglects thermal expansion and elastic behavior of 
the material and this approximation is employed here.  This material has a yield point 
stress that must be exceeded before the material can deform.  When the yield stress is 
exceeded, the material flows similar to a fluid but with the flow rate proportional to the 
excess of the stress over the yield point stress.  Let, 
 

 
 
where σVM is the von Mises stress in tension and τVM is the von Mises stress in shear.  
The yield point stress in shear is denoted by τYP and it is the value of the von Mises stress 
in simple shear that causes yielding of the material.  For this material it is common to 
formulate the constitutive equation in terms of the constant value of τYP.  The constitutive 
equation for the incompressible Bingham material is. 
 

  when  

      otherwise 
 
When this material undergoes deformation, the entire rate of work done by the stresses is 
converted to a heat flow rate.  Consequently, in the first law .  In addition, the 
internal energy is assumed to be a function of temperature only.  Under these conditions, 
the first law becomes, 
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and the entropy production rate is, 
 

 

 

Clearly,  may be interpreted as the specific heat at constant volume, cV, so that, 

 
 

 

 

 

During deformation, the quantity  is the heat flow rate internal to the material 

element and, 
 

 ,  

 
 so that the externally supplied heat flow rate, , is, 
 

  ,  

 
     , otherwise 

 
Owing to the assumption of incompressibility the mean stress, , is indeterminate 
from the deformation. A similar situation occurs in the case of any incompressible 
material..   
 
PENG-ROBINSON CUBIC EQUATION OF STATE 
 
 This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations.  For a specified state (vapor or liquid) the equation 
contains three constants, R, a and b.  It relates the pressure, p, to the specific volume, v, 
and temperature, T, as follows, 
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For this case assume the internal energy is a function of the specific volume and the 
temperature, E = E(v, T).  The first law yields, 
 

 

 
and then, 
 

 

 
 In order for the entropy to be a state variable, 
 

 

 
Assuming the second derivatives are independent of the order of differentiation gives, 
 

 

 
When p is eliminated from this equation using the equation of state, the result is, 
 

 

 
and integration gives, 
 

 

 
so that 
 

 

 
The multiplier of  is the specific heat at constant volume, cV, so the heat flow rate and 
entropy production rate become, 
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VOIGT MATERIAL (KELVIN-VOIGT MATERIAL) 
 
 The sketch below is a conceptual description of this material.  Although it is 
helpful to represent the physical characteristics of the material with this sort of sketch, D. 
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics, 
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations 
of such sketches. 
 
 
 
 
 
 
 
 
 
 
 
 
 The contributions to the stress, σEij, and σVij, are taken as the classical 
formulations for thermoelastic and viscous materials.  The external work is associated 
with σEij only as the work associated with σVij is dissipated as heat in the material 
element.   The total stress is the sum of the two contributions so, 
 

 

 
 

 
 

 
The internal energy, E, is assumed to be a function of σEij and T only.  The work term is 

taken as  and then the first law becomes. 

 

 

 
and 
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The condition that must be satisfied in order that the entropy, s, be a state variable is, 
 

 

 
Assuming the order of differentiation for the second derivatives may be interchanged, 
this condition becomes, 
 

 

 
When the constitutive equation is substituted into this condition, the result is, 
 

 

 
and integration gives, 
 

 
 
with M(T) being an arbitrary function of temperature.  Recognizing that the specific heat 
at constant volume, cV, is related to M(T) through, 
 

 

 
yields, 
 

 
 

 

 

Since the internally generated heat flow rate is , the external heat flow rate, , 

is given by, 
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MAXWELL MATERIAL 
 
 The sketch below gives a conceptual, physical understanding of the Maxwell 
material.  The strain has separate elastic and viscous components, eEij and eVij, that are 
induced by the total stress, σij.  
 
 
 
 
 
 
 
 
 
 
 
 

The analytical model developed here uses classical definitions to relate σij, eEij 
and eVij as follows, 

 
 

 
 

 
and the total strain rate, , is defined as, 
 

 
 

The external rate of work is  while the internal rate of work that is converted 

to heat flow rate is  and the internal energy, E, is assumed to be a function of 

eEij and T only.  The first law is, 
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and 
 

 

 
The condition that entropy be a state variable is, 
 

 

 
With the assumption that the order of differentiation may be interchanged, this equation 
becomes, 
 

 

 
Substitution of the constitutive equation into this equation gives, 
 

 

 
and integration leads to, 
 

 
 
The function of integration, N(T), is related to the specific heat at constant volume, cV, 
through, 
 

 

 
so that, 
 

 
 

 

 
The external heat flow rate, , is the difference between the total heat flow rate, , and 

the internal heat flow rate, , so that, 
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