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1 INTRODUCTION

Tools used for various measurements in bore holes are frequently suspended on a
cable whose diameter is small compared to the bore hole diameter. This study presents a
model for estimating the influence of filter cake thickness on the cable axial drag force
per unit of cable length. Differential sticking results when the drag force is sufficient to
prevent the tool from being lowered or retrieved in the bore hole.

Differential sticking has been studied from many points of view. A
comprehensive review of the studies is given in Reference 1. Many of the studies are for
drill collars in bore holes and are not applicable to the analysis presented here. This
report will not attempt to review the material in Reference 1.

In this report many idealizations are introduced in order to develop a
mathematically tractable model. Consequently, many of the observed features of
differential sticking are not predicted by the model. On the other hand, some new insight
into the differential sticking problem is offered by this idealized model. Some of the
1dealized features of this model are,

1. Owing to the diameter ratio of the cable to the bore hole being small, the borehole
wall is modeled as flat with the cable resting upon and in contact with it.

2. The filter cake is modeled as a frictional (Mohr-Coulomb), porous material, see
Reference 2), with a constant friction angle and a uniform permeability.

3. The filter cake material is assumed to satisfy its failure criterion everywhere. This
assumption is thought to be plausible while the filter cake is building

4. The cable drag force per unit length associated with the capstan effect ( = (cable
tension) / (bore hole axis curvature)) is not included in the analysis. Clearly, this
influence can be added to results presented here.

5. The coefficient of friction between the cable surface and the filter cake is assumed
to be constant.

6. Gravity effects in the fluid and filter cake are ignored as contributions are small
compared to fluid pressure influences in this study.

7. The solid particles of the filter cake are incompressible and their elastic strains are
neglected.



2 NOMENCLATURE

0 = friction angle for filter cake material

¢ = (filter cake thickness) / (cable diameter)

FoV = force per unit length on cable toward bore hole contact by filter cake
radial effective stress

FtVv = force per unit length on cable toward bore hole contact by filter cake
shear stress

FpV = force per unit length on cable toward bore hole contact by fluid
pressure

Fo = total force per unit length on cable from contact with filter cake

DFoV =FoV/ (2-r-(pm—rpp)), dimensionless

DFtV =FtV/(2-r-(pm—pp)) , dimensionless

DFpV =FpV/ (2-r-(pm—pp)), dimensionless

DFo =Fo/ (2-r-(pm—pp)) , dimensionless

Ueasie = coefficient of friction between the cable and the filter

% = angle sometimes used to define frictional material, not used here

r = radius of cable

o = ccw angle from negative z-axis to cable tangent

B = generic angle measured cw from positive z-axis

a0, BO = angles o and P on cable cross section at top of filter cake

pm = uniform fluid pressure inside the bore hole and filter cake

pp = pore pressure at the bore hole wall

thk = filter cake thickness

p(o) = fluid pressure on cable wall at angle o

61, 62, 63 = ordered principal stresses, 61 > 62 > 63

omean =(cl+4+063)/2

radius =(cl-03)/2

ov(o) = normal effective, compressive stress in z-direction

ou(Q) = normal effective. compressive stress perpendicular to z-direction

on(Q) = normal effective, compressive stress from filter cake on cable wall at
angle o

Tn(Q) = shear stress from filter cake on cable wall at angle o

CABLE = coefficient of friction between the cable surface and the filter cake

material



3 DESCRIPTION OF FRICTIONAL MATERIAL

The frictional material model employed here is described in Reference 2. The
total stress (actual force per unit area) is the sum of the pore pressure and the effective
stress. The mechanical response of the filter cake is determined using the effective stress
and is independent of the fluid pressure. A non-trivial, inelastic deformation is possible
only when the material stress state satisfies the failure criterion. This criterion is met in
the Mohr circle sketch below.

shear stress

A omean = (6max + 6min) / 2
T radius = (Cmax — Gmin) / 2
= omean*sin()
61, 62, 63 = principal stresses
0 = constant friction angle

ol o2 o3

0 omin omean omax

compressive normal stress

The failure criterion is satisfied when the radius of the largest Mohr circle contacts the
failure line (point A in the sketch). Material deformation may occur when the failure
condition is satisfied. The largest Mohr circle may not cross the failure line. If material
deformation occurs it must be shearing on the planes determined by point A and in the
direction of the shear stress at Point A on these planes.



4 ANALYSIS

The sketch below shows the configuration of the model studied in this report.

cable cross section, radius =r

pm = mud pressure

thk = thickness cable

I \ / filter cake
V4

bore hole wall

pp = pore pressure at bore hole wall

This study includes the above configuration and the case where the cable is fully buried
by the filter cake (thk > 2-r). Consequently, two mathematical derivations are required.
The pressure and effective stresses in the filter cake remote from the cable have the same
mathematical solution for any filter cake thickness. Let z be the coordinate measured
inward from the bore hole wall and perpendicular to the bore hole wall. The pressure and
effective stresses in the filter cake remote from the cable are given by,

pl(z) = fluid pressure = pp + (pm — pp) - thik
1

6+ (z) = normal effective stress L to bore hole wall = (pm — pp) - [1 - thikj 2

6, (z) = normal effective stress || to bore hole wall = (1—2 - sin(i) - (pm — pp) - [l - thik)
3

Equation 3 is derived based on the assumption that all points in the filter cake satisfy the
failure criterion and that,

omean(z) = mean normal effective stress = (1 —sin(¢i) - (pm — pp) - (l — thik) 4

Equations 1-4 are used below to determine the loading on the cable from the filter cake.
The pressure and stress distributions are assumed to be valid up to the boundary of the
cable. Under this assumption, the normal effective stress and shear stress on the cable
surface are shown in the figure below and.



oyla) = -~ si\;l(qb) -(1—sin(¢) - cos(2 - a))
T (a) = - Si\;l((b) -sin(¢) - sin(2 - a)

local tangent to cable



4.1 FILTER CAKE THICKNESS < CABLE DIAMETER

= (thk)/ 2*r) <1 f=m2

filter cake

/777 \
formation idealized bhore hole wall

The sketch above shows the parameters z (measured from the idealized bore hole
wall), thk, o, B, 2O, BO and  used for this part of the analysis. The pressure and
pertinent effective stresses in 0O > oL > -7t/2 are,

pla) = pp + (pm —pp) :SIT% 7
— (pm — ' sin(ocO) —sin((x) (1= sin(é) - cos(2 - q
sin|aQ) —sin| & ) )
rulad =(pm—pp) 2 SRy i) -sinl2-al 9
and
£ =0.5-[1+cos(aO—0.5-7)] =0.5-[1+sin(aO)] 10

The above pressure and effective stresses are used to evaluate the following

dimensionless forces for thk <2-r.
-/

DFGV =FoV/ (21 (pm—pp)) = |
« Pm-—pp

? GN(Ot) -sin(a) - da



—sin(a0) - cos{aO) - 0.5- (00 +0.5- 1) + 0.25-sin(2 - 0O)

—sm(¢) sin{aO) - cos(aO) ll 2-cos’ /3]
+sin(g) - [ 0.25-(a0+0.5-7) +0.125- sm(2 a0) +0.5-sin (aO)-cos(aO)]
/|(1+sin(@)) - (1+sin(aO)
11
DFtV = FtV/ (2-1-(pm—pp)) = sz-da
0 pm-—pp
—{sin(¢)/[(1+sin(¢)) - (1+ sin(aO))]} .

B ~[2 -sin(00) - cos*(00)/3 + 1/8 + 10/4 —sin(4- aO)/16]

J- p -sin(a
0 PM—pp
= cos(aO) + [ cos(a0) +0.5-a0+0.25-1—0.25- sm(2~a0)]/[1+sin(a0)] 13

DFpV =FpV/ (2-r-(pm—pp)) =

—n/2
«0 PM —Pp

DFG=Fo/ (2-r-(pm—pp)) =

il (o.smo

{1

+2MMWM}: +@mmwwmw 4




4.2 FILTER CAKE THICKNESS > CABLE DIAMETER

z pm
| o=T/2
p(c)
thk
L filter cake
cable cross section
C= (thk) / 2*r)>1
7777 N Pp
formation idealized bore hole wall

The sketch above shows the parameters z (measured from the idealized bore hole
wall), thk, o, 2O and  used for this part of the analysis. The pressure and pertinent
effective stresses in 7w/2 > o > -7t/2 are,

pla) =pp+21(;-<1+sin<a>>~<pm—pp) 15
_ l—sin(¢)~cos(2-a) 1 .

ol = (pm =) =2 1) | 16
_ sin(¢@) -sin(2 - a) 1 .

cale) = pm—pp)- SO (1Lf1 i) 17

The above pressure and effective stresses are used to evaluate the following
dimensionless forces for thk =2-r,

—n/2

DFoV =FoV/ (2-r-(pm—pp)) = I M-da
2  pm—pp
= [-025-7-(1/¢)-(1+0.5-sin(@))] / [L + sin(g)] 18
DFtV=FtV/(2-r-(pm—-pp)) = _Tzw-da

2  PM—DPP
— —[sin(@)/(1+sin(¢))]-0.125-7-(1/¢) 19



—m/2

DFpV =FpV/ (2 r-(pm-— pp) J‘ P -sin(a
2 PM—DPP
=025-7-(1/¢)
—n/2 o
DFc =Fo/ (2'T-(pm—pp)) = I GN—(),da

=2 PM— PP
= n-[1-0.5-(1/¢)] / (1+sin(¢))

20

21
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SOME GRAPHICAL RESULTS

DOWNWARD, DIMENSIONLESS FORCES VERSUS FILTER CAKE THICKNESS
0= 20. degrees
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r — (FILTER CAKE THICKNESS) / (CABLE DIAMETER]

The forces per unit length acting on the cable must vanish in order to satisty the force
equilibrium conditions. Owing to the symmetry of the model, the forces perpendicular to
the cable axis and parallel to the idealized bore hole wall all vanish. In addition,
symmetry ensures that that there is no moment per unit length about the cable axis. The
above figure gives the vertical contributions to the force on the cable from pressure and
wall stresses. It may be verified that the sum of F6V, FtV and FpV is zero so the
solution considered here satisfies all equilibrium conditions.
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CRUDE ESTIMATE OF CABLE DRAG FORCE PER UNIT LENGTH

The stress states depicted in Equations 7, 8 & 9 on Page 6 and Equations 15, 16 &
17 on Page 8 are in the failure state and, by assumption the material continues to be in the
failure state. The vertical, compressive, effective stress is greater than the other two
principal stresses which are equal to one another. When an axial load is applied to the
cable attempting to slide the cable relative to the filter cake, a shear stress parallel to the
cable axis on the inclined face on Page 6 is required to resist potential sliding. This may
be accomplished by changing only the principal effective stress parallel to the cable axis.
It must be changed to equal the vertical, compressive, effective stress. This change may
be visualized using the sketch on Page 3. Before the axial load is applied, 61 = 62 < 63
while application of the axial load moves 62 to equal 63 so that the failure criterion is
reached when 61 <62 = 63. This change implies a possible discontinuity in the
circumferential stress that is acceptable for the ridgid-frictional material model. The
result of the new stress state is that the vector labeled Ty on Page 5 now is perpendicular
to the sketch as shown below.

local tangent to cable

The effective normal and shear stresses on the cable surface for the new stress state have
the same magnitudes as those on Page 5. That is,

oo =2 =sing]-cos2- 2
tula) =2 sinlg) sinl2-a 23

1+ sin(¢)
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This is not a possible state for cable sliding based on shearing in the material according to

the frictional material formulation. In general, the boundary stresses from equations 22

and 23 do not correspond to Point A indicated in the sketch on Page 3. The direction of

sliding must be axial so that all points on the cable boundary must have on(ot) and Tn(Qt)
(o

values at Point A. This condition requires that ﬁ = tan(¢) or, using Equations 22

and 23 and a little trigonometry,
T
+2-a=—
o o > 24

Since o varies with position on the cable surface and ¢ is a constant, Equation 24 cannot
be satisfied by the stress state given by Equations 23 and 24. Clearly, the solution to this
problem is more complex than the simple stress fields considered here.

The assumption that the filter cake meets the failure criterion everywhere and that
during cable axial sliding the size of the region undergoing shearing around the cable has
a small radial thickness can be used to make a crude approximation to the axial load per
unit cable length required to initiate sliding. The assumption concerning a small radial
thickness is based on the solution of the equilibrium equations with uniform pressure and
all stresses dependent on radial position only. In this case G,, varies inversely with r.
This approximation uses the product of the radial stress at the cable surface from
Equation 22 and tan(0) to estimate the axial shear stress on the cable surface at incipient
slipping. When this is integrated over the cable surface the resulting force is found for
having the frictional material undergo shearing.

The crude approximation described in the preceding paragraph includes an
implicit assumption that the axial load on the cable can be reached before slippage
occurs. The possibility that the coefficient of friction between the cable and the filter
cake, Lcasie, 1S not high enough to prevent cable slippage relative to the filter cake before
the crude approximation load is reached must be recognized. This possibility may be
taken into account by the following formulation.

(axial cable drag force per unit length to initiate sliding)
2-r-(pm-pp)
= MIN(kcppe» tan(g)) - DFo 25

DDRAG =

where MIN([ xp15» tan(@)) equals the minimum value of weapie and tan(¢). The plot
below shows the dependence of DFG on ¢.



DIMENSIONLESS CABLE DRAG FUNCTION VERSUS DIMENSIONLESS FILTER
CAKE THICKNESS
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7 = (FILTER CAKE THICKNESS) / (CABLE DIAMETER)

Finally, the earlier result that the sum of FoV, FtV and FpV equals zero is no
longer valid as the direction of the cable wall shear stress has changed direction. There is
a force per unit length of FoV + FpV acting on the cable normal to its axis. The plot
below gives this force per unit length in dimensionless form.

DF~c4 1\ + DFp(¢.¢) VERSUS DIMENSIONLESS FILTER CAKE THICKNESS
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13
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The above figure can be used to find the lateral load per unit length on the cable from the
bore hole. This load should be added to the capstan load effect ( = (cable tension) / (bore
hole axis curvature)) to obtain the total lateral load per unit length between the cable and
the bore hole. This load should be multiplied by the coefficient of friction between the
cable and the bore hole and the result added to the drag load obtained using the top plot
on Page 13.
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