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A FEW THERMODYNAMIC CONSIDERATIONS FOR MATERIALS

by Paul Paslay, P.E. #44278, Manatee Inc., F-4992

I. INTRODUCTION

A requirement from physical science is that any theory describing material
behavior must conform to the general results from Thermodynamics. The purpose of this
report is to tie the results given in the file “Classical Thermodynamics” (October 17,
2015, THERMO.DOC') to continuum mechanics and to determine any conditions that
must be imposed on constitutive equations and corresponding internal energies in order
for them to conform to Classical Thermodynamics.

In the case of a continuum mechanics formulation for a particular the system
studied is a fixed mass particle. The stresses and strains are considered to be uniform.
The first essential part for this study concerns the First Law of Thermodynamics for fixed
mass systems which may be expressed as,

p.qu.E+p.W

where definitions and a compatible set of units for this equation are,

. . . . . in—1b
P-4 =time rate of heat flow into the system from its exterior, 7
slug —sec
= p-T-s for areversible process
. . . in —1b
p-E = time rate of change of internal energy, .~
slug — sec
in —1b

p-W = time rate of work being done by the system on its exterior, &= —
slug —sec

. slu
p = mass density, — 3g
in

In addition, define,

T = absolute temperature, °R
. ) . in—1Ib
p-s = time rate of reversible change of entropy, slug —sec— R
. in—1b
P Stor = time rate of change of total entropy,

slug —sec-° R
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To provide some background, briefly consider the elementary case of combined,
linear heat transfer and conduction. Let cv be the specific heat and K the thermal
conductivity and define I as,

I= jT,kk-dt

to

where T, is the Laplacian, t is time and t, is a constant reference time. The reversible
heat flow rate, drev , i,

ue =0y THK-

Since the is no work done by this system,
W =0

and the First Law of Thermodynamics is,
drey =E

The two equations for qrev show that E is a function of T and I. Then,

B=S 10 s o THK T=oy THK T,
Consequently,

E=c, T+K-I
and,

g o T T
T T T

When a specific constitutive equation is considered, it is often possible to express
W explicitly. Substituting W into the first law and solving for S yields an equation
whose validity must be determined. The condition that the entropy, s, be a perfect
differential (i.e. s is a property dependent only on the state of the material and thus path
independent) leads to a condition that must be satisfied by E . When this condition is
satisfied then the Inequality of Clausius is valid and it becomes a way of expressing the
Second Law of Thermodynamics as,

f[;dSZO



where the equality is only for a reversible cycle.

Several common, elementary, constitutive equations are reviewed in the section
below. In each case, the expressions for E, s and Stor are determined. In each case,
the derivation is given in Cartesian spatial coordinates. These reviews show the kind of

restrictions thermodynamics imposes on constitutive equations undergoing changes of
equilibrium states.

The results below use the common indicial notation for the subscripts i, j, k, and
m. A comma preceding subscripts implies partial differentiation with respect to the
subscript variable. Additionally, a repeated subscript occurring in a single term implies
summation over X, y and z for that term.

Let 9; be the Kronecker delta defined as,

8; =1 wheni=j

=0 when i # j

then a few examples using indicial notation are,

-7 =35 -L.g 8 llg.=L.g .5 1=3.l5..6.-1. 2)
Ow =1, =710 =304 Sij) (Gij 3 O 6")—2 (Gij 0; =3 Oy

2 2 2 2
=0, t0, +0, -0,:6,-0, -0 —GZZ-GXX+3-(0XY to,, +GZX)



II. SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS
A. LINEAR THERMOELASTICITY

This constitutive equation relates the strains, ejj, stresses, s;j, and absolute
temperature, T, as,

oy =h-leg =3-a-T)-3, _'_2_6_(% _O"T'5ij)
=?1.ekk 'Sij+2'G'ejj_(3'5\'+2'G)'a'T'6ij

where in terms of the material constants Young’s modulus, F , and Poisson’s ratio, v,

A v-E
A=
1+v)-(1—2-v)
G=— L
2-(1+v)
3h+2.G=— L
1-2-v
e (3'71” Gl
A
A
V= = =
2-1G+A

1 n
e, =——=0, +|— —G, +a-T|3,
.G ! {2(1+u)~G ! } J
= lA 0y |- = }\‘A A 'Gkk+a'T '8ij
G 2.G-37+2-G
I .9 (1) __in®
o = thermal coefficient of linear expansion = = p ) slug—°R
slug

p = mass density, a function of e; and T, ——
m

The parameters A and G are constants so that, up to this point the internal energy, E, and
density, p, are functions of e;; and T.



The thermodynamic system under consideration is a particle whose mass is
constant. The rate of work per unit volume done by this particle on its exterior is,

W=—Gij - €y

Now assume the internal energy per unit volume is a function of e and T so that,

de;, ' OT

and the Thermodynamic First Law gives,

. . . . 0E -
=E+W=|——-06. |re, + —-T
q [ae.. ”] i oT

In order that s be a state function, the following condition must be satisfied,

OfL[oE _ || 2 (L JE
OT| T (de; " || 0e;\T oT

The order of differentiation may be reversed so that,

Jdo,
87E — Gij — T . Gu
de;; oT

When the thermoelasticity constitutive equation given above is substituted into this
condition, the result is,

JE - A
£=7w-ekk 61] +2'G'eij

: oE
Integration of de, gives,

~ A

$h-ley)” +Goey-ey +H(T)

2

E=



. . JH(T) .
=3-A+2-G)-a-T + -T
q ( )0‘ Ciik 9T
. . OH(T) T
= 2.Gl- L
s (3 A+ G)aekk+ T T

In order to relate H(T) to a physically familiar quantity, note that T is an independent
thermodynamic property and when the strain rates are zero the value of q is,

. oH(T)
qle. =0 =

‘T=cy T
! oT v

where C is the specific heat at constant volume and assumed to be constant. Then.
H(T) may be written as,

H(T) =Cy '(T_To)

where ¢y - Ty is a constant of integration. Consequently, E may be written as,

A

E= -fv(ekk)z +G-eij-eij+cv'(T-To)

~ A

q=[3-2+2.G]-a-T-ey +cy T

A A

s=(3-4+2.6) a6 +c, ¥

and, since there is no energy dissipation in the material,

A ~

Sror =8=32+2-G|-a-é, +cy-—

The temperature, T, is the absolute temperature in the above derivation. When the
constitutive equation is used in problem solving, it is common to replace (T-To) with a
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius).



B. LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

The constitutive equation for this fluid may be written in terms of the stress, Gj;,
the strain, e;, the deformation rate, €;;, and the absolute temperature, T, in the form,
Gy =hey 8, +2fi-e; +C-le, —3-a T8,

i ij

where,

X and 1 = volumetric and shear viscosities, constant material properties
C = elastic compressibility, constant material property

o = thermal coefficient of linear expansion, a constant

This case of a fluid introduces new considerations to the determination of the
internal energy and the entropy functions. The presence of a viscosity implies that there
is a dissipation of energy within the material element owing to flow. When the system is
dissipative the entropy function cannot be derived using the constitutive equation in the
same way as given in the case of the thermoelastic material. By assuming that E is a
function of €. ¢; and T and proceeding in the same way as the thermoelastic material
derivation shows there is no entropy function that is a state variable. When dissipation is
present it is converted to heat and this must be reflected in the contributions to the First
Law of Thermodynamics. From a physical point of view, the total work done by the
stresses can be divided into two parts. The first part of the work is that which is required
to make the entropy a state variable. The second part of the work is the excess of the
total work over the first part. The second part is converted to external heat and is not
included in the first law equation for the material particle. This may, in this case, be
accomplished by splitting the stress into two parts, 6Dj and 6S;. The stress , 6Dy, is
determined from the part of the constitutive equation causing dissipation while the stress,
GS;, is determined from the part of the constitutive equation contributing to the
recoverable elastic strain energy as follows,

c; =cDy + csSij
oD =k-¢, -8, +2-L-¢
oS, =C-(ey —3-a-T)-§,

The rate of work per unit volume being done by the system is —oS;; - ;. Assume
the internal energy is a function of ew and T so that the First Law of Thermodynamics
gives,

aekk kk aT 1 1

q=

JE . JE . JE
oT

8, —oS; -éij +a—ET
de,,

and the entropy production rate, s, is



.1 (9E . Q9E T
s=—- 0y —oSy ey +—==
T | 9e,, oT T

In order for the entropy to be a state property,

1 (9E 1 ( 0°E dcS; ) 1 9°E 1 0°E
——| =—-8, —0S, |[+—- 8, — =_. =_. -3,
T> |de, " '] T |dTode, ' OT T de,d0T T de,oT °

The order of differentiation for the second derivatives is interchangeable so this equation
becomes,

T. 8(58ij OFE
de,,

ij

When the constitutive equation for 6S;; is substituted into the above equation, the result
is,

The last equation is integrated to give,
E=1.C-e,  +J(T)

where J(T) is an arbitrary function of T. When E is substituted into the expressions for
heat flow rate and entropy production rate given above, the expressions become,

1=3-a-T-C-&, + T
q Kk dT
dr T

When €, = 0, the heat flow rate is usually written as ¢, -T with ¢y being the specific
heat. In this case,

dJ(T)
dT

=CV

Since cv is assumed to be a constant, integration yields,

J(T) =Cy '(T_To)



where ¢, - Ty is a constant of integration. To summarize,
q=3-a-T-C-e, +cy-T

s=3-a-C-e, +c, —

~

E:%'C'ekkz‘*'cv (T-T,)

The value of a in these equations is the total heat flow rate for the system and some is
generated internally while the remainder is supplied externally to the material element.
The internal heat flow rate, qp, , is,

qp =oD; 'éij :(x'ékk e +2'“'éij)'éij

i
Now let the externally supplied heat flow rate be & so that,
a=a-+ap

and,

4=3-a-T-Coéy +oy THh-ey  +2J-¢; ¢

and then,

~ . T X ., 20 . .
=3-0L~C~ekk+cv-?+?~ekk +?-eij-eij

o=

Stor =
The rate of entropy change for the dissipation, Spss, equals Stor —$S or,

2-m ..
u.e__.e__

<2
’ ekk + T ij ij

—| >l

Spiss =
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C. ELASTIC, PERFECTLY-PLASTIC SOLID

The formulation investigated here is the one appearing in the text, Theory of
Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons,
Inc., 1951). The von Mises stress, Gy, 1s defined to be,

_ B 2 _ i3
Ovm —ﬁ\/cij "0 =3Oy —ﬁ'\/(cij —3 0k 'Sij)'(cij — 30k 'Sij)
And all possible stress states must be such that,

<

GVM GYP

where Gyp is the yield point of the material in tension, a constant. The strain is split into
two parts. The elastic strain, eEj, is directly related to the stress state while the plastic
strain rate, ©P;;, is adjusted to be proportional to the reduced stress, 0; — 30 - 9.
The total strain rate is the sum of the elastic strain rate and the plastic strain rate,

eE;; + ePy; . The relationship between the stress and the elastic strain is,

6, =[1-cEy (31 +2-G)-a-(T-T,)]-3, +2-G-¢E,

or after inversion,

¢E, =ﬁ1l}-cij t-—E g6, +a(T-T) |5,
' 2.G 2-(1+p)-G

where the material parameter nomenclature is generally the same nomenclature used for

the thermoelastic material considered above. The plastic strain changes over a loading

increment when Syym = Oyp during the increment. This change is governed by,

—— | _
ePij =T Gy =3 Ok 'Sij while Syym = Ovp
eP; =0 otherwise

where I must be adjusted so that v\ = Svp at the end of the increment. Note that
eP,. = O so that the plastic strains contribute nothing to the rate of volume change. The
rate of doing external work for the elastic strain is assumed to be recoverable while the
rate of doing work for the plastic strain is assumed to be dissipated into a heat flow rate
within the material element. Define these as,

u

. . u u u ) .
W, =0, -¢B, =—[A-cBy ~[3-1+2-G)-a-(T-T,)]-¢B,, —2-G-¢E, - ¢E,

U 1
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. ) u
WP:—(Sij-ePij:—Z'G'eEij'r'(Gij_%'Gkk'sij) .
while Gy = Ovp

_ DZ 1 2)
=—4-G"-T'[eE; -¢E; —5-¢E,,

WP =0 otherwise

Now assume that the internal energy, E, is a function of the elastic strain, eE;;, and
the temperature T. For this material the First Law of Thermodynamics is written as,

G=E+ W,
so that,
oE (0 oE
= —(A-eE,, —13-A+2-G|]-a-|\T-T,)]-6. —2-G-ecE ecE. +— T
q [aCEU ( kk ) ( (o) )) ij ij ] ij aT
and,

In order for the entropy to be a property,

1 ([ 0E (U 0 0 0 1 0°E I 0
- —(r-eE, -3:2+2-G)-a-(T-T,))-86, —2-G-€E, |[+—| ———+(3-2+2-G)-0-5,

Tz (aeEij ( kk ( ) ( O)) ij 1_]) T (aTaeEu ) ij
_1 _OJE

T 9eE, T

As usual, the order of differentiation of the second derivatives is assumed interchangeable
so that,

JE I 0 I 0
=By -5, +2-G-eBy +[3-A+2-GJ-a- T, -5,
aeE-- 1) 1 ]
ij

When this equation is integrated there results,

u 2 U U u
E=ld-cEy’ +G-cE, -cE, +[3-1+2-G|-0- T, -E,, +K(T)

1
2
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1 oK(T)

) I 0 . .
S:3'7L+2'G‘(X'6Ekk+—' ‘T
T JT

Now define a specific heat at constant volume, cv, using,

d|ee,—0 =Cv - T

to obtain,

_ dK(T)
- dT

Cv

where, obviously, cv is a function of temperature only. The heat flow rate and entropy
production rate may be written as,

C.1=(3-i+2-(u})-(x-T-éEkk +CV‘T

. I I ) 1 .
s:(3-7»+2-G)-oc-eEkk +¥-CV'T

Similar to the case for a fluid, the quantity Q is the total heat flow rate in the material
element. The quantity Wi, is the rate of work for the plastic strain that is converted to a
heat flow rate. Let g be the externally supplied heat flow rate so that,

If 6ym =Ovp:

T U U . : I s
4=q-W, =[3:2+2.G|-a-T-¢Ey +0y-T+4-G*-T-[eE, -oE, — 1-¢E,,’|
and,

, I D) : T 4.G*. ( | 2
STOT—37L+2-G-a-eEkk+cV'¥+ T \eE;; -eE; —3-eE

. .. 4.G>T

Spiss = Stor — S :T’(CEU -eE; —%‘eEka)

otherwise:

tl U U . .
G=(3-2+2-G)-a-T-¢E, +¢c, T

. I 0 . 1 .
Sior =3:2+2-G) a-¢E,, LR



Spiss = Stor

_i=

13
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D. INCOMPRESSIBLE BINGHAM MATERIAL.

The most common formulation for this material neglects thermal expansion and
elastic behavior of the material and this approximation is adopted here. The specific heat,
cv. is assumed to be constant. This material has a yield point stress that must be exceeded
before the material can deform. When the yield stress is exceeded, the material flows
similar to a fluid but with the flow rate proportional to the excess of the stress over the
yield point stress. Let,

G = l.G -G —l-c 2—\/5- G.G —l.c 2= 3.’[:
v —\2 9505 T2 0 T2 i 95 T3 %« T VM

where Gvu 1s the von Mises stress in tension and Tvwm 1s the von Mises stress in shear. The
yield point stress in shear is the value of the von Mises stress in simple shear that causes
yielding of the material. For this material it is common to formulate the constitutive
equation in terms of the constant value of Typ. The constitutive equation for the
incompressible Bingham material is.

Oym —V3-Typ (

L 1
2-peey = § =3 O 9y when oy 231y,

Cvm
2-p-e; =0 otherwise

When this material undergoes deformation, the entire rate of work done by the stresses is
converted to a heat flow rate. Consequently, in the First Law of Thermodynamics for the
material W = 0. In addition, the internal energy is assumed to be a function of
temperature only. Under these conditions, the first law becomes,

. 9E -
=27
1=37

and the entropy production rate is,

JOE : . .
Clearly, ——= may be interpreted as the specific heat at constant volume, cv, and it is

oT
assumed to have a constant value so that,

E:CV'(T_TO)

q:Cv‘T



s=c T
—cy-—
T

During deformation, the quantity - o - €; is the heat flow rate internal to the material
element and,

(GVM_‘/g'TYP)’GVM
3-u

-Gij 'eij =

cSVM_‘E'TYP ( i 2)
2—‘Gij.6ij_§'6kk =
"H-Oyym

=0,

, Oym = V3 - Typ
otherwise

so that the externally supplied heat flow rate, 4 , s,

(GVM _\/E’TYP)'GVM
3-n

d=c, T+

» Oym V3 Typ

, otherwise

and,

T (GVM _\/§'TYP)'GVM

Stor =Cy +— +
TOT \% T SHT s

Cym = \/§~‘CYP

Stor = Cv -

T .
— , otherwise
T

Owing to the assumption of incompressibility the mean stress, % Ol

indeterminate from the deformation. A similar situation occurs in the case of any
incompressible material.

The last two equations may be written more compactly using Macaulay brackets®

| T _ ety | _ Bty
Stor = Cv -T—|—<(GVM 3.H'T;P) GVM> and Spiss = <(GVM 3.M.I;P) GVM>
Where the added brackets are defined as,

(x)=x whenx=0 and (x)=0 otherwise

E. PENG-ROBINSON CUBIC EQUATION OF STATE

2 'W. H. Macaulay, “Note on the Deflection of Beams”, The Messenger of Mathematics, v. 48, p. 129, 1919

15



This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations. No viscous effects are included here. For a specified
state (vapor or liquid) the equation contains three constants, R, a and b. It relates the
pressure, p, to the specific volume, v, and absolute temperature, T, as follows,

_R-T_ a
v—-b v +2.-b-v—D>b?

A consistent set of units is,

1bf in
R -

p in2 0 R
. 3
T °R b m
Ibf

in’ in*

\' a

1bf 1bf

For this case assume the internal energy is a function of the specific volume and the
temperature, E = E(v, T). With

W = rate of doing work=p-V

the First Law of Thermodynamics yields,

=5y 7P aT

and then,

c_a_1(3E . 0ET
T T |ov P oT T

In order for the entropy to be a state variable,
1 (B, Y, L (2E 9p)_1 9°E
> (ov ") T | 9Tav T o |7 T avar

The second derivatives are independent of the order of differentiation so that,

ov oT

When p is eliminated from this equation using the equation of state, the result is,

16
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GE_ s
ov vZ+2.-b-v—b?

and integration gives,

a 2.v+2-b—+8 b2 a v+(1-v2) b
ke 8~b2.ln[2-v+2~b+\/8.b2 ]+L(T)_Z-ﬁ-blln{v+(l+\/5)-bJ+L(T)

so that

. _R-T .‘.]_'_dL(T).,-F
v—b dT

The multiplier of T is the specific heat at constant volume, cv, so the heat flow rate and
entropy production rate become, for constant cy,

q=2T ic, T
—

s=1_- R 4, T
T v—Db T

Since there is no energy dissipation for this material,

o . R-T

q=q= V4cy T
v —
and,
$ =$= “VH+cCy o —
TOT V—b v T

Note that, when a = b = 0, the Peng-Robinson equation reduces to the ideal gas
law. Also note that van der Waals’ equation cannot be recovered from the Peng-Robinson
equation as a special case.
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F. VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)

The sketch below is a conceptual description of this material. Although it is
helpful to represent the physical characteristics of the material with this sort of sketch, D.
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics,
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations
of material models based on such sketches.

oE;; = elastic stress

G; =stress =OE; + oV
—_—

GV, = viscous stress

NONNANN

The contributions to the stress, 6Ej;, and 6Vj;, are taken as the classical, linear
formulations for thermoelastic and viscous materials. The external work is associated
with 6E; only. The work associated with 6Vj; is dissipated as heat in the material
element. The total stress is the sum of the two contributions so,

GEij :x.(ekk —3-0,'T)'81»j +2'G'(eij —(I'T'Sij)
GVi_i =X~ékk 'Sij +2'H'éij

c.

P = cEij + GVij

The internal energy, E, is assumed to be a function of 6E; and T only. The work term is
taken as —©E;; - €; and then the First Law of Thermodynamics becomes.

qz(?)E_GEﬁ].é“&E.T

dey JaT

and

s-a_1 aiE—cEf .éi,+aiE.I
T T (e TV 9T T

The condition that must be satisfied in order that the entropy, s, be a state variable is,
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L [9E _ g |, L[ OE _90E;) 1 0°E
T | e, "] T |0Tde; OT | T de,adT

The order of differentiation for the second derivatives may be interchanged so this
condition becomes,

JcE.
B_E = GEU —T- Y
de;; JT

When the constitutive equation for the elastic part of the strain is substituted into this
condition, the result is,

JE
7=}\.'ekk 61] +2Geu
de;;

and integration gives,
2
E=7 ke, +G-¢;¢ +M(T)

with M(T) being an arbitrary function of temperature. Recognizing that the specific heat
at constant volume, cv, is related to M(T) through,

dM(T)

_CV

dT
yields,

q=(3-2+2-G)-a-T-&, +c,-T
s=(32+2-G)-a-¢ +CV%

Since the internally generated heat flow rate is —SVj; - €;; | the external heat flow rate, a ,
is given by,

Q=q+oV, 8, =q+h-ey’ +2-¢; ¢
=(3-4+2:G)a-Trey +c, T+h-e,  +2:1-¢; ¢
and,

) ) T A . 2-u .
STOT=(3-k+2-G)-a-ekk+cv-¥+%-ekk2+ )
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G. MAXWELL MATERIAL

The sketch below gives a conceptual, physical understanding of the Maxwell
material. The strain has separate elastic and viscous components, eE;; and eVj, that are
induced by the total stress, Gj;.

h 4

A
V.

eE.. eV.

]

The analytical model developed here uses classical, linear definitions to relate Gj;, eEj;
eV and T as follows,

6, =A-(eE, —3~0L~T)-8ij +2-G~(eEij —a-T-Sij)

and the total strain rate, €, is defined as,

e, = eEij + eVij

The external rate of work is — ©; - €E;; while the internal rate of work that is converted to
heat flow rate is — Oy - €Vj;.

6, ¢E; =A-eBy -€E, +2-G-eE, -eE, —(3-1+2-G)-¢E,
6, €V, =L-eV, +2-L eV, eV,

The internal energy, E, is assumed to be a function of eE; and T only. The First Law of
Thermodynamics for this formulation is,

) oE . oE
= —0o. |reE.. + —-T
a (aeEU 0”] T oT

and
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.. q 1 ( 9E : OE T
S=—=—- — o .eEi‘+7.i
T T (0eE; " 9T T

The condition that entropy be a state variable is,

_ 1 [OE _ |, L[ 9E _9d0;) 1 9E
T? |0eE;, " | T |0ToeE; OT | T 0cE,oT

The order of differentiation may be interchanged so this equation becomes,

oE 9o

=0, .
OeE ; ’ oT

Substitution of the constitutive equation for the elastic part of the strain into this equation
gives,

0E
JeE;

=%-eE, -8, +2-G-¢E,
and integration leads to,
2
E=1-1-¢E, +G-cE;¢E, + N(T)

The function of integration, N(T), is related to the specific heat at constant volume, cv,
through,

so that,

q=(3-2+2-G)-a-T-¢E, +c,-T

s=(3A+2-G)-a-eE,, +cv-%

The external heat flow rate, & , is the difference between the total heat flow rate, 4 , and
the internal heat flow rate, — ©;; - €Vj;, so that,

Q=q+0, -6V, =q+A-eV,> +2-[-&V, eV,
=(3:2+2-G)-a T-¢E,, +c, -T+Ar-eV,  +2-[-eV,-eV,



and,

. . T
Stor =(3-A+2-G)-a-eE, +c, s
where,

eE = % 34T
3-A+2-G

R
(3-2+2 11
) ’ 16, G, G
eV, -eV. =3 i e +1
T a-3a+2.m | 2@ -3a+2-m 471

T S A2 o2
T 99 3470

éTOT:(3')"+2'G)'a'éEkk+CV'¥+ -

2.p-T 4.3 3‘7_v+2'ﬁ)2'

and,

23
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III. IRREVERSIBLE THERMODYNAMICS RESULTS FOR SOME COMMON
ENGINEERING MATERIAL MODELS UNDERGOING CHANGES IN
THERMODYNAMIC EQUILIBRIUM

INTRODUCTION

The definition of a reversible thermodynamic process for a constant, unit mass
system is that the rate of change of the system entropy, S, during the process is given by,

QREV < Q

s=s
REV T T

where a superposed dot implies rate of change and the system has unit volume,

T = absolute temperature

S = actual rate of change of entropy of system

srev = corresponding rate of change of entropy during a reversible process

Q = actual rate of heat flow into system

Qpey = corresponding rate of heat flow into system undergoing a reversible process
S, Sgrev, Q and Qg are all per unit volume quantities.

An expression determining Sgev for a homogenous material with defined

properties may be found as described above using the First Law of Thermodynamics for a
reversible system as,

. 1 - 1
S =—-E+—-W
REV T T REV
where,
E = rate of internal energy per unit volume increase of the material per unit mass.

The internal energy, E, is a state variable.

Wiy = rate of doing work per unit volume by system (with constitutive equation
satisfied). Instantaneous constitutive equation satisfaction implies instantaneous
equilibrium states. The constitutive equation (equation of state) defines the
possible equilibrium states for the material.
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The internal energy per unit volume of a homogeneous material is part of the
definition of the material. It may be specified, for example, as being a function of strain,
eij, and temperature, T. The specification of the variables defining E are based on the
physical understanding of the material being modeled.

The expression for Wiey may be determined using the constitutive equation for
the material. Since the constitutive equation defines only equilibrium states it satisfies
the required condition on Wggy, .

When the formulations for FE and Wy, are substituted into the above equation
for the First Law of Thermodynamics for a reversible system, an equation for Sgey is
found. The validity of this equation may be evaluated using a fundamental postulate of
thermodynamics. The postulate is that Sggv is a property of the material (not path
dependent). For example, when the expressions for E and Wiy are,

p=9E . (9E
de; ' 0T
WREV =—0y 'éij

If srev is a state property, its differential must be an exact differential and expressible
as,

) OSgpy - OSppy -
S = -e. + -T
REV de.. ! oT

]

Comparison of the last two equations shows that,

Of1foE__||_ 9 [1 JE
AT T |oe; " || 9e;| T OT

The last equation is a partial differential equation for E(cj, T). Since the second
derivative is independent of the order of differentiation the equation reduces to,

de; ' oT
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JOE
When the constitutive equation is substituted into the last equation, Do is found
ij
explicitly and E can be determined by integration of this equation. Clearly, the procedure
just described requires that E, Wy and the constitutive equations be compatible so

that E may be determined.

One extension to the formulation above may be found in the theory of Irreversible
Thermodynamics. When this theory is limited to processes that are approximated as
being instantaneously in equilibrium (i.e. satisfy the constitutive equations at every
instant), the results presented below are obtained using the concept of a dissipative term
in the First Law of Thermodynamics. The equations used here for this irreversible

process are derived by splitting the heat flow rate into two parts. The first is Qrgy
where it is assumed that the state variable, E, has been determined and Sgev is
determined as described above,

Qrev =T Sgpy

The second part of the heat flow, Q piss » 18 defined in terms of the actual rate of change
of entropy, S as,

Qpiss =T (S - .SREV) =T s
Consequently, the actual heat flow rate into the system, Q, is,
Q:QREV +QDISS =T-s

The results reported in the preceding section included the procedures given in this section
without introducing the formalities of Irreversible Thermodynamics. The tabulation
below summarizes the results of the preceding section. For each of the seven material
models studied the following tabulation gives,

the constitutive equation

the equation for the internal energy. E

the reversible rate of change of entropy, Sgev
the total rate of change of entropy, Stor

the dissipative rate of change of entropy, Spiss

M S

The slight changes in the nomenclature below are obvious. Two of the seven materials in
the following tabulation have Spiss = O (linear thermoelasticity and Peng-Robinson). In
Irreversible Thermodynamic theory the expressions for Spiss are generalized using
Onsager’s relations that include non-equilibrium states. When the constitutive equations
are satisfied at every instant, Spss determines the coefficients for the Onsager relations.



A. LINEAR THERMOELASTICITY

G =k-(ekk —3~0c-T)-é‘>ij +2.G.(eij —(X-T-Sij)

Sy =(3242-G)-a-é, +cy L

Stor :(3'7¥+2'G)'(I'ékk +c, T

Sprss = 0
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B. LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

Gij :)\"ékk'sij +2~H.éij +C'(ekk _3'G'T)'6ij
E:%-C-(ekk)2+cv.(T_TO)
éREV =3.a.c.ékk+cv %

é . T A .
STOT :3-a.c.ekk+cv.7+7.

o W
SDISS=¥'(ekk)2+T'e~'eu
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C. ELASTIC, PERFECTLY-PLASTIC SOLID

G = 1.0 .G —l.c 2
v — V2 9595 T2 Ok

Z\E'\/(Gu —3 04 'Sij)'(cij ~304 'Sij)

éij =éEij-|-l“-((5ij -lo, -Bij)

(I" adjusted to ensure this condition)

o, =(h-eEy —(3-1+2:G)-0a-(T-Tp)) -8, +2-G-¢E,

or

o.
eEi. =—2% 4]— A Ok +(1~(T-TO) '6{
' 2.G 3-A+2-G 2-G !

E=1-1-eE, +G-¢cE; €E, +(3:1+2-G| -0 Ty eBy +cy - (T-T,)

Spev =(3°A+2-G)-a-¢eE, +cy %

. 2
Stor =(3-A+2-G)-a-eE,, +cy %+4 G-I eE, -eE,; —%~(eEkk)2)
4.G*-T
Spiss :—'(eEij -eE;; _%'(eEkk)z)

+ .
3:-0+2-G

16-G?*

2 2

=0 +—'G .a.T
[3 W 3a2.G6 M ]

16-G*
-[GU 'Gij—{(ckky ——— 0, -a-T)
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D. INCOMPRESSIBLE BINGHAM MATERIAL

— |3 1 2 _ 3 1 2 _
GVM_\/E'GU'GU_E'Gkk _\/;'\/Gij'cij_?ckk =3 Tyy

. Oyy — V37T
2-p-g =W 2 (o, —1 0y ) when 6y =3 - Ty
Cym
2-p-e; =0 otherwise
E=cy (T_To)
T
SREV_CV‘¥

Stor =Cv ot Gy =3 Ty

. T .
Sror =Cy o otherwise

Spiss = Gum =3 Typ

Spiss = O otherwise
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E. PENG-ROBINSON CUBIC EQUATION OF STATE

_R-T_ a
v—-b v +2-b-v—D>b?

L a b_h{w(l—ﬁ)-bj

p

2426 | v+{1+42)-b

REV V—b 4 T

S =———.v+cCy, -—
TOT Vv
v—b

Spiss =0
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F. VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)
GEij =k~(ekk —3O€T)6U +2'G'(eij _a'T'Sij)
oV zx'ékk Sy + 2'5..6”

(e

P = cE it csVij

E:%-k-(ekk)2+G-eij ey ey (T-T1,)
. . T
SRrEV =(3-7»+2-G)-0c-ekk+cV ?

Stor =(3°A+2-G)-0-¢, +cy -

o2 2-p .
(e ) + T i S

S DISS

= | >l
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G. MAXWELL MATERIAL

o, =M (eEy —3-a-T)-8,+2-G-[eE, —a-T-§,

and the total strain rate, €, is defined as,

e, = eEij + eVij

E=1-%:(eBy )" +G €E; -eE; +c, (T-T,)

. . T
Sppy =(3-A+2-pu)-a-eE, +cy T
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IV. NON-EQUILIBRIUM THERMODYNAMICS

The subject of Non-Equilibrium Thermodynamics considers thermodynamic
systems that are not at all instants in equilibrium (don’t satisfy the constitutive equations).
The preceding sections have dealt with dissipation resulting from viscous flow and plastic
flow. In all of the above cases the entropy dissipation can be expressed in terms of state
variables or their time derivatives (Cj» G, orey ). In this section the more complicated
case of predicting behavior when the instantaneous state is not in equilibrium is
considered.

The publication most frequently cited in this field is the book Non-Equilibrium
Thermodynamics by S. R. de Groot and P. Mazur (Dover Publications, 1984). This book
presents the classical approach by using the difference between the total entropy rate and
the reversible entropy rate as the measure of the non-equilibrium state. In this book the
measure is designated by o, called “entropy production” and, according to the Second
Law of Thermodynamics, must be = 0. For cases considered by de Groot and Mazur the
entropy production is restricted to the form,

cs:Z:Ji - X,

where J; is a flux, X is a thermodynamic force and i is summed over all the non-
equilibrium influences. The fluxes are assumed to be expressible in the
phenomenological equations as,

J=)L; X,
J

and the quantities L; are called the phenomenological coefficients. Eliminating J; in the
two preceding equations gives.

o=32 L XX,
j

i

de Groot and Mazur give numerous examples and show that in many cases, but not all
cases, the Onsager Reciprocal Relations are satisfied. The Onsager Reciprocal Relations
are,

Lij = Lj'
that is, the phenomenological coefficients are symmetric
The single case studied below has the constitutive equations completely specified.

This case is in this category of materials with memory. The behavior of these materials
depends on the past loading history. When the loading is removed at a specified time the
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material may continue to deform after that time. The paper® describing the constitutive
equation and giving some comparisons with experiments can be described as an
incompressible, gelling, Bingham material. The constitutive equations are, using
Macaulay brackets,

2-p-d, =<\/Tz\/}%m>-(cij—;-okk-8ﬁ
2

where,
(x) =xifx>0;=0 otherwise
T = a viscosity type constant, > 0
d; = component of deformation rate, in terms of velocity components vi,
O, = component of the stress tensor
J? = second invariant of the reduced stress tensor
I i i
= E'(Gij ~3 Ok '6ij)‘(01j ~3 Ok '6@)
Terrr = yield point in shear at time t, current yield point in shear
g=t
[D, e de
£=—co
=T - E=t '(Tl To)
B+ [D, e .dg
§=—o0
t = current time
S = dummy variable for time
o = time constant , > 0
B = a constant in the equation for Tcrir, = 0

3% A, Slibar and P. R. Paslay, "On the Analytical Description of the Flow of
Thixotropic Materials", Second-order Effects in Elasticity, Plasticity and Fluid Dynamics,
International Symposium, Haifa, Israel, April 23-27, (1962) pp. 314-330.

See also H. C. H. Darley and George R. Gray, Composition and Properties of Drilling
and Completion Fluids, Fifth Edition, Gulf Publishing Company, 1988, pp. 203,204.
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D,> = second invariant of deformation rate tensor
_ 1, .
=2 dij dij
T = fully gelled yield point in shear, = T,
To = minimum achievable yield point in shear, = 0

The rate of doing external work by the stresses, W | s,

d. = \/K_ICRIT \/I_TCRIT
RN ENIN
Z\/Z_ICRIT_\/T

2-pn 2

V — . o, — L. 2)_ .
W=o0c (Gij C;—3'0y |= J,

The specific heat, cy, is assumed to be constant and the internal energy, E, is assumed to
be a function of T only so the reversible rate of heating, drev , is,

. dE - .
qdRrev :E‘T:CV'T

and,

. T
Srev = Cv ?

Then,

. YA PO »

qTOT:CV’T+%'\/J2
K

and,

. T NI = Terer

Stor =Cy —+—————-4/J

TOT VT 20T 2

so that,

- - - VI = Terer

Spiss = Stor ~ Skrev =M7_T'\/J2

Similar to the earlier cases for different materials, Spiss is non-vanishing when there are
viscous influences in the material behavior. In the other cases an equilibrium state (i. e.-
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Spiss = 0 ) can be found by setting the deformation rate to zero. On the other hand, the

value of Tcrir is dependent on the past history of the deformation rate so an equilibrium
state cannot be established instantaneously.

For this gelling material it is clear that S iss will not vanish when there has been
a non-vanishing deformation rate. When a constant, non-vanishing deformation rate is
imposed for a long time, Spss for the material will approach a constant value denoted
here as the steady state value. To illustrate how a steady state condition may be
determined, consider this material in a viscometer that imposes a constant shear
deformation rate. Furthermore, idealize this deformation rate as a single non-trivial
component, dy,, imposed since & = — <= . The value of Tcrir can be found from D, being
constant (= Dy) and Dy = +|d | to be,

t

[Dy e dg

g=—o a-f D,
T =T -(t T )— . .
CRIT 1 t . —ett) 1 0 1 (X,'B"‘DO 0 (IB"'DO
B+ [D,-e dé
& =—c0
_ (X'B dxy
a-B+|d,, a-B+|d,,

c,=0,=0_ and Oy

as the only non-trivial stress components. Other than being equal to one another, the
normal stresses are indeterminate from the constitutive equations because the material is
incompressible. For this steady state the shear stress, Gy, and all components of the
deformation rate are time independent. The x-y constitutive equation becomes,

o-B xy

C, =7 +2-p-d, =71, - . +2-p-d,

y CRIT 2 y 1 Q'B"‘dxy 0 a-B_'_de 2 y
or,

dXy
‘ny _ 1 T, |oB 2-p-ap |dy ] r_0>0
‘Tl ‘ l+ dxy rl l+ Xy Tl O('B ’ Tl
a-pB a-B

The two figures below are based on the last equation. The first figure shows the

. . . . Ty
influence of viscosity when T = 0 and the second shows the influence of . when
1
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A second example illustrating the determination of the variation of S pss with
time is presented at this point. For this example, the only non-vanishing component of
the deformation rate is dxy, > 0. The time history for d;; is defined in the sketch below.

D:

t* t time

t = current time

The integral determining Tcgrrr for t >t is,

E=t t =t *
J'D2 ) e—u-(t—é) .dE = IDA . e—u-(t—é) SdE+ _[DB . e—u-(t—é) .dE = é [DB _(DB _DA) . e—u-(t—t )]
g=—oo E=—oo g=t"

so that fort>t",

Dy _(DB _DA) 'e_a'(t_t*)

T =T, + -
o 1 a'B‘I'DB _(DB _DA)'e_u"H

] '(Tl _To)

and,
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Oy =Tepr T2-1- Dy

The last equation, in dimensionless form after eliminating Tcgir, becomes,

1_AD el
Gy D 2.u-D
Y _ B Jr=to jpp 2 e (t—t)>0
Ty a-f +1_@ e—u(t—t*) T, T,
B Dy

The above results may be used to evaluate the rate of dissipative entropy, Spiss,
when t > t" as,

- NI = Terir Gyxy — Tcrir Dy -0,
S = J = — -0 = —-—_———-—s--
DISS 2},LT 2 2},LT Xy T
. . . . ny - 2 : “’ : DB .
The figure below gives time histories of - for different values of D when
1 B

0L—'B=0.5andr—°:0_
D T

—_

B
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——— b,
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aQ
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V. OBSERVATIONS CONCERNING NON-EQUILIBRIUM
THERMODYNAMICS

The customary presentation and treatment of Non-Equilibrium Thermodynamics is
exemplified in de Groot and Mazur’s treatise, cited earlier. Examples of many
phenomena are presented including thermal conduction, chemical reactions and magnetic
fields. A change of state is accompanied by a change of entropy. The excess of this
change over the corresponding reversible change is expressed as the sum of products of
“thermodynamic forces” and “thermodynamic displacements”. A linear relationship
between these forces and displacements is postulated in every case. Many phenomena,
but not all, are shown to satisfy the Onsager Reciprocal Relations.

In continuum mechanics the typical investigation proceeds differently from the
scheme described in de Groot and Mazur’s treatise. The common, practical, continuum
mechanics investigation begins with a specified, defining constitutive equation and a
compatible internal energy. The internal energy is compatible when it and the
constitutive equation can be used with the First Law of Thermodynamics to derive an
expression for the entropy that is a path independent variable. The preceding section
presents a case of a gelling material. The gelling strength, Tcrir, depends on the past
history of an invariant of the deformation rate. The only time an equilibrium state (that
is, Spiss = 0) is reached, in a practical sense, is when there has been no shearing for a
long time. The presence of a practical, steady state behavior is predicted for the gelling
material when a constant, non-vanishing deformation rate is maintained for a long time.
Two illustrative examples are given above to demonstrate that the special tools of non-
equilibrium thermodynamics are not required for a typical continuum mechanics study.
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