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SOME FORMULATIONS COMMONLY USED IN CONTINUUM MECHANICS
by Paul Paslay

I INTRODUCTION

There are two essential components associated with the development of
constitutive equations that mathematically represent real materials. The first component
is the proper mathematical formulation of the quantities appearing in the constitutive
equations. There are physical constraints that are common to all materials that dictate the
way these quantities are defined and they may be expressed mathematically. The other
component in the development is more in the realm of physics as it is the underlying
understanding of the characteristics of a particular material. This work is an attempt to
address the considerations associated with the first component of the development of
appropriate constitutive equations. The presentation is restricted to Cartesian spatial and
reference coordinate systems so the distinction between covariant and contravariant
components is not made. In addition, only minimal references to mathematical
restrictions on theorems, such as continuity requirements, are made in the text.

After some introductory material the concept of motion is described and the topic
of strain is presented in detail. Only two strain definitions are considered in this work.
One is referred to the spatial coordinate system while the other is referred to the reference
coordinate system. The reader should note that for small strains neither of the tensor
strains considered reduce to the usual engineering definition of strain owing to a factor of
one half on the tensor shear strains. Following the coverage of strain the issue of strain
rate is presented.

The topic of stress is covered next. The restraints on the stress tensor imposed by
Newton’s First and Second Laws are derived. Although stress is closely associated with
a spatial coordinate system, the formulation for stress is presented in both the spatial and
reference coordinates. The coverage of stress is followed by a presentation of four
definitions of stress rate. The stress rate presentation is rather detailed as the author feels
this topic is often not covered or is poorly covered in some textbooks in Continuum
Mechanics.

The final section considers the relationship of constitutive equations to Classical
Thermodynamics. The section presents a set of elementary constitutive equations for
several materials in thermal equilibrium. Expressions are derived for the internal energy,
heat flow rate and entropy production rate. These derivations are based on the
requirement that a material in thermal equilibrium must have entropy that depends only
on the state of the material.

The appendix is a review of the usual, elementary, Classical Thermodynamics
formulation.



II PRELIMINARY CONSIDERATIONS

The change of configuration of a material body is described in this work using a
reference and a current set of coordinates. Both of these coordinate systems are three-
dimensional, Cartesian, right-handed coordinate systems. Only the current set of
coordinates is considered in this section.

The current set of coordinates is the one in which evaluation of the quantities
studied are made. It is a spatial coordinate system in an inertial space, one without
acceleration. Each set of coordinates xi, X», and x3 (referred to as x) locate a fixed point
in the inertial space, i.e. X =X, "V, + X, 'V, + X5 V5. The distance, ds, between two

points separated by the differential amount dx, i.e. dx = dx, v, + dx, v, +dx; -V, is,

ds = \/dxlz +dx,” +dx,’

The base vectors v,, v, and v, (in most texts called i, j and k) relate the vector ds
joining points x and x+dx to dx as,

ds=dx, v, +dx, v, +dx; Vv,

In the following, unless otherwise specified, summation is implied by repeated,
subscripted, letter (not numbered) indices in a term so the above two equations may be
written as,

ds = \/dx; - dx,

When a second inertial, spatial coordinate system with base vectors, 31, %2 and 53 is
introduced the vector may be expressed in either coordinate system as,

.a=a, Vv, =a -V,

1 1 1

The dot product of this equation with each of the base vectors leads to the following
results,
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a;=a;"v;*V,=¢;a,
where,
Cii=V;*V;

The matrices associated with the coefficients, [c] and [¢], are both orthogonal matrices so
that,

[c]=[c]" =[c]" and the determinant of [c] = +1
For the differential length vector dx,

dx; =c; -dx; and dx; =c¢; -dx;

so that
0X; B 0X
Cj=— and Ci =—
0X; 0X;

1

The determinant of a matrix formed from a;; is denoted as ||a|| and may be

evaluated using,

ap ap ap
”a”: Ay Ay Ans || = Cy " Ay " Ap "y

a3 as Agg

where ejji 1s the Levi-Chivita symbol defined by,
eiz=¢e3n==en =11 and e =en=¢ey3=-1
otherwise ej = 0

The cross product of two vectors a and b may be determined by,

axb=ey -v;-a; b,



and the volume, VO, determined by the three vectors a, band ¢ , 18,

VO =axbei=e, -[H|

where,
a] 1 Cl
[H]=|a, b, ¢,
a, by ¢

Also note that,

aXi . an .an
X, 9%, OX

Ck * —| " €imn = Cimn
0x

n
and recall that,
Cijk = -Cjik  Cijk = -Cikj  Cijk = ~Cyji

The coordinate transformations above show that these are tensor transformations.
Consider a second rank tensor &;j (like stress or strain) that undergoes a change of

coordinates to obtain Eij . The transformation is given by,

Eij =Cy "Cy “Eu

If 1 = then,

Ei =Cy "€y 8y =90, Ey =84

where d;; is the Kronecker Delta (8; = 1 if i = j; = 0 otherwise). . This last equation
shows that the sum of the diagonal terms (the trace) of the [§] matrix is unchanged by the
change of coordinates. Therefore &;; is called an invariant of §;. It is straightforward to
show other combinations that are invariant in a change of coordinates. The three simplest
for a second rank tensor are given below.

I1 =&ii =Tr[g]

R =g g = Tr[e} el ol



I3 = Eij 'gjk “Ei =Tr[[§]' [E] [E]]E Tr|[?§:r_

The well known Cayley-Hamilton Theorem delimits the number of independent
invariants. This theorem states that a square matrix satisfies its characteristic equation.
The characteristic equation for [§] is,

E]-2[1] =0
or,
HEH + (_222 '§33 _333 'En _E.m 'Ezz +§3| '?:;13 +§32 '223 +E12 'Ezl)'}‘-*‘ (Ell +§22 +§33)';‘2 +X =0

and upon applying the theorem and introducing I1, 12 and 13,
El+nfef-Crnz+tm )] @ -to2-n+2-13)1]=0

Therefore, all invariants of the form Tr I[E] _where n is an integer = 3 may be expressed

in terms of I1, 12 and I3. Consequently there are only three independent invariants of this
form. A second set of invariants that are commonly used are K1, K2 and K3 and they are
related to 11, 12 and I3 as follows,

Ki=11
K2=-1-12+1-11°
K3=1-1° - 11211+ 1-13

Gauss’ theorem of the gradient is used in the following developments. In terms of
the notation used here it is,

IS f;—;-d(volume)=f ff'ni'd(surface)

volume surface

where f is a function of position in the volume and n is the outward, normal, unit length
vector on the surface.



IIT STRAIN
II1.1 DESCRIPTION OF MOTION
In preparation for defining strain a rigid body motion is defined first. For a rigid
body motion the straight line distance between any two material points in the same body
is unchanged by the motion. Any other motion has strain occurring in at least part of the
body.

In this work two distinct coordinate systems are used to define motion. They are,

1. The material coordinate system X with components X, that define constant mass
material points fixed in the body and have base vectors \7a . These material points

are referred to as particles in the following development. This is referred to as the
Lagrangian description.

2. The spatial coordinate system x with components x; that define points in an
inertial space and have base vectorsv. .

The sketch below illustrates the systems.

X34

v

X,

X1

In order to simplify subsequent work the initial values for x are assumed to equal
the reference coordinates X. That is, for the particle X,

Initial value of x; before motion occurs = X;
Initial value of x, before motion occurs = X,
Initial value of x5 before motion occurs = X3

and in this initial state the strain in the body is zero everywhere in the body. When
motion of the body occurs, the particle X has a change of its spatial coordinates, x. In
this section the strain is determined for the change in configuration from the initial state



to the current configuration defined to be at the end of the motion. This change is given
by X(x) in the current configuration. In order to help make the development tractable
subscripts in the current configuration are Latin symbols while those in the material
coordinates are Greek symbols. Consider two particles X and X + dX separated by a
differential distance, dS, in the initial, reference configuration. The relation of dS to dX
is given by,

ds’ =dx_ -dX,

and the vector joining X and X + dX is given by,

dS=dX_ -V,

where V_ are the base vectors associated with the X, coordinates.

As a result of the motion the distance between X and X + dX has changed from its
initial configuration value. This changed distance may be found using the X(x)
relationship. Note that the relationship may always be inverted to determine x(X) since
contacting particles cannot be allowed to come out of contact nor can we allow two
particles to occupy the same spatial point. This is a fundamental concept when
describing a classical continuous body. As a result,

0X
dX, = —-dx;
0X;
Xm =&.dxa
X,
and
0X, 0x; _
ox; aXg P
ax; 0X,
X, 0x; !

The equations above show that the two matrices for the partial derivatives are inverses of
each other.

A differential length vector V, -dX in the reference configuration becomes the

vector V; -dX, in the current configuration where,
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This vector is referred to as the Chapman distorted base vector in this work.

Strain that occurs in a body going from the reference configuration to the current
configuration may be evaluated mathematically for a point by determining,

ds® —dS* = dx, -dx, - dX_ -dX,
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III.2 SPATIAL STRAIN TENSOR
I11.2.1 FORMULATION

The first strain tensor to be considered is referred to as the Almansi-Hamel or spatial
strain (ejj). It is deduced from the last equation in Section III.1 and

0X
dX, = —=-dx;
0X;
to obtain,
0X, 0X
0x; 0X;
so that,

1 X, 90X,
eU —_ 6U —_ .
2 0X. 0X.

1 J

Note that ej; is symmetric. The expression e - dx; -dx; will not vanish for all, arbitrary,

non-zero values of dx unless every component of e;; vanishes. Consequently, a rigid
body motion from the reference configuration to the current configuration will have all
the e;; components vanish. When all the components of e;; do not vanish, a rigid body
motion between the reference and current configuration is not possible. Therefore, ¢ is a
physically acceptable definition of strain. In matrix notation,

€ ©n €3 |
[6ij:|= €y €y Cyul=_r [I]_

€31 €3 €3

X,

axj

T
aXa] .

Since [e;] 1s real and symmetric, it is always possible to find a change of spatial
coordinates that transform [e;;] to the form,

e, 00
[el]E 0 ey 0
0 0 e

and e, ey and ey are called the principal spatial strains. The axes of the new spatial
coordinates are called the principal directions.
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An element aligned with the i™ principle direction that was one unit long in the
reference configuration has length 1 + §; in the deformed configuration and,

1 1 1

=] - — . =—
K 2( (1+6i)2) Co1-20

On physical grounds, —1<9, < so that —® <e; <1 and this range applies to all the

-1

principal strains ej, ey and ey, §; is referred to as a principal spatial extension.
111.2.2 ILLUSTRATIVE EXAMPLES

Uniaxial Strain:

5 vfi-L) 0 o
x, =K X, 'K K?
X, =X, or X, =X, sothat Eeij]s 0 0 0
X, =X, X, =X, 0 0 0

Since the off-diagonal terms .in [e;] vanish, the three principal spatial strains are
%-(1 - —2), 0 and 0. A graphical representation of this uniform strain is shown in the
K

sketch of rectangular parallelepiped shapes below.

XA
----- reference configuration
current configuration
Pid
”
e
,
’
b4
”

T

1

1

1

I .

1 > X,

1

1

1
. .
e— 1/K — !
1 1
i 1 »
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Isotropic Strain:

1

X

x, =% %(I—F) 0 0

x, =L X,

x,=L-X, or X2=XT2 so that [eij]s 0 %(1_%) 0

x; =1-X

3 3 < X, 1 .
3TL 0 0 3-(1—3)

Since the off-diagonal terms .in [e;] vanish, the three principal spatial strains
are - (1 - %) , %(1 - %) and %(1 - %) . The sketch below of the transparent cubes

illustrates this uniform expansion with the current configuration shown by the solid, red
line..

X4
L>1
AT
’ L' d
, 11
g==p=r |
| 1 1
I I 1
I L 1 I
| R of > %
-—-=-=+
i i
1 1
' Dl N R B
e 1 »
X
Shear Strain:
1.
x, =X, +M-X, X, =x, -M-x, 0 M 0
X, =X, or X, =X, so that [eij]s M -1-M°
X; = Xj X, =X, 0 0

Note the one-half factor on the off-diagonal terms. For the engineering strains defined in
virtually all Strength of Materials textbooks the factor is one rather than one half. The
above form with the one half is the tensor definition of strain. In addition, the presence
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of non-vanishing off-diagonal terms indicates the spatial coordinate system is not aligned
with the principal directions. The characteristic equation for the [e;;] matrix is,

-N LMW+ MPA=0
and its roots are the principal strains giving,

e, =-1-M?+1-M* +4-M?
ey =-1-M* -1\ M* +4-M?

ey =0
and the corresponding principal directions are,

. 1 . ~L-M+1-yM? +4

vV, = 1 5 1 - v, + 1 ;
\/2+EM —EM M +4 \/2+3M -

9,
MM+ 4

B M =1 M? +4 o 1 5

2

M-M? + 4

Vi = 1 T
\/2+%-M2—%-M- M’ + 4 \/2+§-M2—%-

Vin = V3
The inclination, y, of the v, vector to the v, vector is,

y=tan’1(%-M+%-w/M2 +4,

This shearing motion is illustrated in the sketch below. The red solid line shows the
reference configuration.



X34
ja——
/’ \ s
- e
\ \
\ LY (N
\ \
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II1.3 MATERIAL STRAIN TENSOR
I11.3.1 FORMULATION
A second strain definition is also based on,
ds® —dS* = dx, -dx, - dX_ -dX,

In this case the Green-St.Venant or material strain tensor, E,,, is found by combining this
equation with,

dx, = 0%, -dX,
X,
to obtain,
ds? - ds? = [ 220X 5 X X,
X, X,

From this last equation, an appropriate measure of strain is seen to be,

X, 0X,
-8,
X, 09X, ]

L
afy 2

Note that E,, is symmetric and that in matrix notation,

Ell Elz E13 T
1 0X. 0X,
E . IE E E =—- i N P B |
[ (xB] 21 22 23 2 l:aXO{l [E)Xﬁl [ ]]
E31 E32 E33

so that principal material strain values and directions may be found. An element parallel
to the K™ principal direction of unit length in the reference configuration has a length of 1
+ Ak after straining and the corresponding principal strain, Ex is,

Eg=t-(+a -1,  or  Ac=1+2-E, -1
Since, —-1< A, <,
-3<E¢ <

and this is true for all the principal strains. Ak is called a principal material extension.



I11.3.2 ILLUSTRATIVE EXAMPLES

Uniaxial Strain:

X,

x, =KX, Xi=1
X, =X, or X, =X,
X5 =X, X5 =X,

Since the off-diagonal terms .in [e;;] vanish, the principal spatial strains are %(1 - L),

L
2

so that EEQB ]E

17

K>-1) 0 0
0 00
0 00

K2

0 and 0. A graphical representation of this uniform strain is shown in the sketch of
rectangular parallelepiped shapes below.

reference configuration

current configuration

X3‘
K>1
—
”
”’
7’
’
”
»

L

1

1

1

1

1

1

1

1
— 1 —) i
1 1
) K 4

X
Isotropic Strain:
X, =

x, =L X,
x,=L-X, or X,
x; =L-X,

SlF S S alEe

ie
I

sothat [E,]=1 [ - 1}1]



18

Since the off-diagonal terms .in [E,] vanish, the principal spatial strains are %'(L2 - 1),

%'(L2 - 1) and %'(L2 - 1). The sketch below of the transparent cubes illustrates this
uniform expansion.

X4
————— reference configuration
L>1
current configuration
sT°°°7% 3
z 1
B - —— 1
1 1 |
| | |
1 1 |
1 1 I
[ 1 |
1 = > » X
[ 1|7 2
______ 17
. }
1 1
1 — —
] ! ; 1
e L »
X
Shear Strain:
1.
x, =X, +M-X, X, =x, -M-x, 0 M 0
— = = | L. 1. 2
X, =X, or X, =x, so that EEQB]= M M
X; = Xj X, =X, 0 0

Note once more the one-half factor on the off-diagonal terms. For the engineering strains
defined in virtually all Strength of Materials textbooks the factor is one rather than one
half. In addition, the presence of non-vanishing off-diagonal terms indicates the
reference coordinate system is not aligned with the principal directions. The
characteristic equation for the [E,,] matrix is,

-+ LM + LM A =0

and its roots are the principal strains giving,



and the corresponding principal directions are,

v 1 Ry LM+ 1-M? +4

1= p
\/2+%~M2+%-M- M’ + 4 \/2+%-M2+§-M- M’ + 4

v - -L-M-1-\ M’ +4 R 1

+ .
I 1
\/2+i'M2+%-M- M? + 4 \/2+%-M2+%-M' M? + 4

Vi =V,
The inclination, T, of the V, vector to the V, vector is given by,

F=tan'l€-M+%w/M2 +4

This shearing motion is illustrated in the sketch below

M>0 | === reference configuration

current configuration

- emfes = - -

.L_._.Ji
v

—

2

—

2

19
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III.4 COMPARISON OF SPATIAL AND MATERIAL STRAINS

The formal relations between [E,,] and [e;] are,

JX, an
o =0 G
0X GXﬁ

a

0X, . X,

.. E .-
o, X |

The case of uniaxial strain in the x; direction determined the E;; and e;; strains as,

where K is the uniaxial straining parameter. The spatial and material strains are
compared for the uniaxial case in the plot below. In addition the usual engineering strain
is shown.

UNIAXIAL STRAINS VERSUS UNIAXIAL STRAIN PARAMETER

1.5

MATERIAL, [E]

1.0 -
/ ENGINEERING

F SPATIAL, [e]

0.0

MATERIAL, SPATIAL AND ENGINEERING STRAINS

-0.5 //
-1.0
-1.5
0.50 0.75 1.00 1.25 1.50 1.75 2.00

K = UNIAXIAL STRAIN PARAMETER
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The studies of shearing motion for the spatial and materials determined two
angles that are,

Y = inclination of first principal direction for the spatial strains to the x; axis
r = inclination of first principal direction for the material strains to the x; axis

The curve below shows how each angle changes as the shearing parameter, M, varies.

THE ANGLES Y AND I' FOR THE SHEARING MOTION VERSUS THE SHEARING PARAMETER

M

90

80 T

o ] /
[
g /
> 50
3
=
2 40
z \

* \\

20 \\

Y \
10
0
0 1 2 3 4 5 6 7 8 9 10

M = SHEARING PARAMETER

There is no shear when M = 0. Note that for a small amount of shear (M << 1) both
angles are close to 45°. The angle for the usual small strain theory is 45°. Relationships
between y and I are,

tan(y) tan(")=1 and v+ I'=90°

In the general case of straining the principal strain magnitudes and directions can
be used to identify orientations that transform during straining from an initial rectangular
parallelepiped to another rectangular parallelepiped. This result can be anticipated on
physical grounds as the initial configuration and the final configuration in the principal
strain directions both have vanishing shear strains. The sketches below show the results.



ALL FIGURES ARE RECTANGULAR PARALLELEPIPEDS

FINAL CONFIGURATION

J1+2°Ey

INITIAL CONFIGURATION
L-A
-
Rt
(’ \ \ ﬁ
\ \\ N J1+2-Ey
\ 7
v

\ ,’
L- J1+2-E,

-
’fl/ : 1-2'611
- /
Ve P I ﬁ
7’ s~ 1 ’
/- 1 7
£” 1.2 1-2¢y
1 ’f/
1 -
L--

EDGES ALINED WITHE
PRINCIPAL STRAIN DIRECTIONS
SYMBOLS INDCATE LENGTH

The above figure demonstrates that,
(1+2-E,)(1-2¢,)=1  P=LILII

so that,

N

EDGES ALINED WITH ¢,
PRINCIPAL STRAIN DIRECTIONS
SYMBOLS INDCATE LENGTH

22
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Consequently, when one set of principal strains is known, the other set can be determined
using the above equations. Note that the first two equations of this section show that, in
general, when either [E] or [e] is specified, the other strain cannot be found.

Recall the definitions of the principal extensions,

6i=ﬁ—l AK=1[1+2'EK—1

When these definitions are introduced into the above equations relating the spatial and
material principal strains there results,

8, =A, P=LILII

Finally, the results in this section show, when the components of either [E] or [e]
are all << 1, the spatial and material strains are essentially the same. In this case, the
normal strains are approximately equal to the normal engineering strains while there is a
one-half factor on the engineering shear strains. Because of the one-half factor the
engineering strain is not, strictly speaking, a tensor.
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III.S TIME DERIVATIVES

Experiments on certain real materials demonstrate that under constant load the
material response is to have a continually increasing strain. The most common materials
exhibiting this behavior are viscous fluids. Since one of the goals of Continuum
Mechanics is to develop mathematical means describing and predicting the behavior of
real materials a means is needed to describe fluid-like behavior. The simplest physical
concept for a fluid is that the response of the material to a constant load is a constant time
rate of change of strain. This section considers the form that time derivatives should have
to properly describe real materials. Studies in Continuum Mechanics frequently go
beyond the notion of a strain rate but the considerations for time differentiation are the
same as the ones presented here.

An underlying concept in Continuum Mechanics is that the kinematic behavior of
a particle of material is completely controlled by the force, temperature, etc. in the
immediate neighborhood of the particle. This concept leads to constitutive equations that
apply to material particles. When the time rate of change of configuration is required to
describe a particular type of material, the time derivative must apply to a particle, not a
fixed spatial location. The remainder of this section presents formulations for finding
time derivatives that apply for a particle.

Start by considering a function, f(X, x, t) representing a time dependent change of

. . ) .. Df(X, x, t
configuration where t is time and define the time derivative, (T) , as,

DI 8y o))

This derivative is sometimes called the substantial derivative. In the special case where
f(X, x, t) = x(X,t) this definition yields,

Dx(X,t) dx(X,t)
Dt ot

X

The components of x are the velocity components of the particle identified by the
reference coordinate X. The definition may now be written as,

Df(X,x,t) d d .0
PSR xS XK x ) 5, (X x, 1)

This derivative follows the usual chain rule of differentiation so that when.

DA, DB, DC
A, =B, -C, then = —%.C,+By-
Dt Dt Dt

p
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and when,

Da. Dbi- Dc.
a; =b; -c; then 23 J-cj+ . !
Dt Dt Dt

The chain rule for differentiation can be used to derive useful results as follows. Starting
with,

X, 0x,

af
ox; 90X,

Take the derivative with respect to time to obtain,

__9%.. D
X, ox, Dt

0X,
X,

D (X, ) 9x,
Dt{ ox,

0X
Now multiply b k
ply by 9X

with the implied summation to obtain,

o

D
Dt

0X,
X,

X, dx; DX,
0X, 0X,; Dt ox,

X
or multiply by — P With the implied summation to obtain,

Xy
D(oX,) _ aXﬁ.aXa.B dX,
Dt{ ox, ox, ox; Dt|dX,

Another result that will be useful later is the time derivative of a differential
length vector, dx, -v., fixed to the material. The material velocity at the origin of this

.- . . . .. 0X -
vector is X, - v, while the velocity at the tip of the vector is (xi + a—‘ ~dx; ) -V, so that,
X .
J
D - X, -
—(dxi Vi)=—l de V.
Dt X
or,
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III.6 STRAIN RATE

Recall the measures of change of distance between two configurations,
ds’ —-dS? =2-e; -dx, "dx; =2-E_, -dX_ -dX,

The case of time dependent motion is considered in this section so the strains are
functions of time. If at any time the time rate of change of ds* — dS” vanishes for an
arbitrary dx then the strain rate components based on the spatial coordinates all vanish.
On the other hand, if the time rate of change of ds* — dS” vanishes for arbitrary dX then
the strain rate components based on the reference coordinates all vanish. Since,

dx, = 0%, -dX,
0X

o

0X, . . . .
and 221 has a bounded inverse the two definitions are physically the same for defining

when the strain rate equals zero. However, the two formulations lead to different
measures for non-vanishing strain rates. This is demonstrated below.

I11.6.1 STRAIN RATE BASED ON REFERENCE COORDINATES
Starting with,

ds’ -dS* =2-E -dX, -dX,

A permissible strain rate formulation is found from either of the forms below,

dE (X
DRt(dsz _dsz)=2,$’t).dxa.dxﬁ
. aEaﬁ(x,t)_l_ OB, (x,t) ax,(X,t) X, -dX,
at 0X. ot

so that strain rate may be determined using,

DE, 9E,(Xt) aEaB(x,t)+ IE (1) ax;(X.t) aEaB(x,t)+ aEaﬁ(x,t).X
Dt Aot ot 3x, ot ot 3x, i

1 1

I11.6.2 STRAIN RATE BASED ON SPATIAL COORDINATES

Starting with,
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ds’ —-dS? =2-e; -dx, -dx,

A permissible strain rate definition can be deduced from,

De; D(dxi -dx;
D

dx; cdx; +ey
Dt

%(dsz ~ds?)= 2-%@:ij dx, dx, )=2-

However, this is a rather cumbersome equation to investigate. Fortunately, there is a
simpler way to proceed to the desired result. Since dS does not change with time,

%(ds2 -ds’ )=%(ds2 )=%(dxi -dx, )=%(6ij -dx; -dxj)

The reason for writing this equation with a Kronecker Delta is that the differentiation
yields a summation and the contributions from i1 and j must be kept separate. as the
expressions for the strain are coefficients in the summation. This is insured if the indices
of the Kronecker delta are kept distinct. Now recalling the result that,

D JX.
2 dx. )= gx
Dt(Xl) X | %

the above differentiation becomes,

. X,
%(611‘ -dx, -dxj)= d; -(%-dxk “dx; +8—J-dxk -dx,
Xk Xk
0 X 0 X
=d, Xk “dx; dx; + 9y - X ~dx; -dx
X 0X .

1 J

0X. 9%,

= S —|dx; dx; =2-d; - dx; - dx
i i

This last equation shows that d;; is an acceptable definition for strain rate. This tensor is

called the deformation rate tensor and it determines the instantaneous time rate of change
of strain referred to the spatial coordinates. The individual components of d;; are given

by,

1 {9x. 0X.
dij=_. i*_ J
2 axj 0X.
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DE,,

Note that d; is independent of the reference configuration while is not.

E

Therefore, unlike the strains, the principal values of dij and cannot be related one

to the other.
111.6.3 ILLUSTRATIVE EXAMPLES FOR STRAIN RATE

Uniaxial Strain:

x, =K-t-X, Xi=1 tk2t2-1) 0 0
X, =X, or X, =x, sothat EEaB]E 0 0 0
X; =X, X5 =X, 0 0 0
Kt 00
DE,,
=l 0 0 0
Dt
0 0 0
X, =K-X, =2t Lo oo
t t
X, = [d]=]0 0 0
X, = 00 0
Isotropic Strain:
X1=L
x, =L-t-X, L-t
X, 1 2 2
Xp=LotX; o X, =2 so that [E,l=1 (¢ - 1)1
x;=L-t-X, X
X, =—3
L-t
Lt 0 0
DE s
=| 0 Lt 0
Dt



%, =L-X, =L L
t t
x,=L-X, =22 dj=lo 1
2 2 t t
x3=L-X3=X—t3 0 0
Shear Strain:
X, =X, +M-t-X, X, =x, -M-t-x,
X, =X, or X, =X,
X; =X, X, =X,
0 M-t 0
so that EEQB]E LMt 1Mt
0 0
0 M 0
DE, 5
— =M Mt 0
Dt
0 0 0

The principal values are,

DE“f‘|1 =%-M-(M-t+w/ M-t} +1)

Dt
DE
Dtali |11 =0
DE,
Tﬁhu =%'M'(M't-\/(M't)z +1)

The principal directions are,

7 - g +M-t+q/M-t)2+1'\7

=~ Vi = 2

M M
V11=V3
¥ - —M-t—w/:(M-t)z +1 5 +é'\72
M M

29



where,

1\:/I=\/2-(M-t)z +24+2-M-t-yy(M-t) +1

%, =M-X, =M"x,

%, =0

()

[d] =

%, =0

S W=

The principal values of [d] are,

The principal directions for [d] are,

- | A,

v, =—(V, +V
)

V=0

Vi

1 -
=E'(_V1 +V2)

N |—
o o Z
S o O
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II1.7 COMPATIBILITY CONDITIONS

In preceding developments in this work there has been a tacit assumption that an
acceptable motion has been considered. In some analyses of mechanical behavior a
solution is initiated by finding a solution for stresses that satisfies force equilibrium (e.g.
— the Airy Stress Function) and then the constitutive equations are used to find the strain
distribution. Since the strain tensor has nine components and the motion generating these
strains is based on three displacement functions, there must be restrictions on the strain
distribution in a continuous body. The equations representing these restrictions are
referred to as compatibility conditions. As the derivation of these conditions is a purely
mathematical matter, only a brief description is presented in this work. A comprehensive
presentation of the mathematical formulation is given in P. G. Bergmann’s Introduction
to the Theory of Relativity (Prentice-Hall, 1942).

The base vectors V, and v, are two sets of mutually perpendicular unit length

o

vectors so that,

V, oV, =0,

i *V; =9

<i

and,

ds? = (v, v, }dx,, -dx,
ds? =, * v, ) dx, -dx,

The Chapman distorted base vectors,

describe the distorted state in terms of the current configuration. That is, V, -dX_, in the

reference configuration becomes V; -dX_, in the current configuration. These base

vectors are in general not mutually perpendicular or of unit length so that we define 9,
as follows,

ds’ = V. *V; ) dX, -dX, = G, -dX, -dX,

The tensor gﬁ is called the metric for the space and,



32

-~ o 0x, 0X; . 9x, 0X; X, 0X,
GaB=Va°V = * J = . l. = .

B = VitV i
X, X, X, X, 90X, oX

B

Comparison with,

1
afy 2

X, 0X,
-8,
X, 90X, ]

shows that,
G,=0,+2E,

Therefore, the metric for the distorted reference configuration is equal to the undistorted

reference configuration metric plus two times the material strain. A similar scheme may

be used to find the metric, ¢j;, for the spatial configuration before the motion occurs.

oX X, - _ X 90X X 90X
o, ﬁ'Va'Vﬁ= o, B'6a13= o, o

oX. 0X. 0X, 0X. 0X.  0X;

1 J 1 J 1 ]

q)ij

VeV, =

Comparison with,

1 X, 90X
e =—-(6U— e.—<

L) 0X;  0X;
shows that,
o, = 6ij _2'eij

The formulations of the metrics ¢;; and gﬂ are now used to develop the

compatibility conditions. In elementary relativity theory a space is defined by its metric,
gij, which is a function of the coordinates x;. The relativity derivations are concerned

with non-Euclidian spaces while the objective here is to show that ¢; and 9, are

metrics in Euclidian spaces. Requirements placed on the motion earlier show that the

metrics ¢;j and gﬂ are positive definite so, from relativity results, the only remaining

condition for the spaces to be Euclidian is that the spaces be integrable.
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Consider a generic vector that has a fixed direction and length. Move this vector
along an arbitrary closed path in the space being investigated. The line integral of the
vector along this path must end with the same vector it started with in order for the space
to be integratable. The integral whose components must vanish can be expressed in
terms of the metric, gj;, and the integral is proportional to the Riemann-Christoffel tensor,
Rgmij; The Riemann-Christoffel tensor may be expressed in terms of the metric, g;, and
its inverse, g, as follows,

1 g, o’g,. 0°g, 0g,
Rsmij - .| - ng + gml + gJ _ g 4
2 0X,0x; 0X;0x, 0X;0X, O0X;0X

dg. ae. dg.) _ (0 dg. dg.
1(_ g + 8is gq),gtq,( gmt+ git gJ]

+ —_
4 0X; ox,  0X ox;  0x,  0x,

4 1

S

+l' agqs_agjs +agq1 _—tq_ agmt_l_agit _agmi
ox; 0x, 0x ox; ox,  0Xx,

Note that for a Cartesian coordinate system all the components of Ry vanish as the
metric, [g], is the identity matrix, [[]. In general, there are only six independent
components of Ry and they are indicated in the table below.

COMPONENTS OF THE RIEMANN-CHRISTOFFEL TENSOR

Lj=] 11 12 13 21 22 23 31 32 33
ms*
11 0 0 0 0 0 0 0 0 0
12 0 D -A 0 E -D -E 0
13 0 D -D 0 F -B -F 0
21 0 -A -D A 0 -E D E 0
22 0 0 0 0 0 0
23 0 E F -E 0 C -F -C 0
31 0 -D -B D 0 -F B 0
32 0 -E -F 0 -C F C 0
33 0 0 0 0 0 0 0 0
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Where,

A =R
B =Ri313
C = Ra3
D =Rz
E =R
F =Rz

When the metrics ¢;; and gﬁ are substituted into Ryy;j , differential equations for E,, and

ejj are obtained and these are the compatibility conditions.

In the case of strain rate the time rate of change of the metrics ¢;; and g,, must

vanish. For example,

% (R apxd (G.. (X, t)))= 0

and,
Rsmij (6np +2 'dnp )= 0

To summarize, the necessary and sufficient conditions that a space be Euclidian
are that the six independent components of the Riemann-Christoffel tensor vanish
throughout the space and that the metric of the space at every point be positive definite.
Obviously, the compatibility conditions can be rather complex differential equations.
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IV STRESS
IV.1 PRELIMINARY CONSIDERATIONS

The definition of stress is intimately tied to Newton’s linear and angular
momentum laws. In this work volume and surface integrals are used so this section
presents formulations for differential volume and differential surface elements. These
quantities are needed for both the reference and the current configurations as well as their
time derivatives.

The sketch below shows a differential length element that is fixed to the material.
The element is from a line on which X, (oo = 1, 2 or 3) is changing while the two other
coordinates are not changing.

Q X, increasing

The vector B joining points P and Q may be determined in the reference configuration
and in the current configuration as,

B| rererence = Ve 14X, no o, summation

X,
0X

o

l§| CURRENT =V; dX, =

-dX, -V, no o. summation

where V_ is the Chapman distorted base vector given by,

i L
Va= V.

The metric for the Chapman distorted base vectors is gaﬁ where,
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and,

- ~ 9X. - ‘
B|currint =V, 1dX,, = a;((l -dX v, =4/G,, "dX, no o. summation

a

Consequently, for the differential volumes, dVOL, associated with the reference and
current coordinate systems are,

dVOL| rererence = 4X 1dX, -dX;

dVOL| cypent = |G - dX, -dX, - dX,

Recall from Linear Algebra, that,

81 = |81
ltA1- (81| = (Al |B]|

to find,

Jx 0X
dVOL| CURRENT = _X 'dxl 'dX2 'dX3 = G_X 'dVOL| REFERENCE

It is clear that the ratio of the current volume to the reference volume from this equation
applies to any differential volume.

The time rate of change of the current differential volume may be obtained using
the last equation and,

R(M)=i(axi(&t))=aa ((’)Xi(X,t))=3Xj(X-t)'i(6Xi(X,t))= Ix; 9%,

Dt| X, at|  ox, X, | ot oX, ox.| ot aX, ox,

]

The steps are,



37

-6X1'3Xj.6xz.6x3
ax, aX, X, X

J

y
(9)'(2 .aXl .an .aX3
ox, X, 0X, oX,

D

E(dVOL| CURRENT )= Copy | T -dX, -dX, -dX,
I%; dx; 9X, dX;
ox, 09X, 09X, oX

]

+

Y e

Note the summations on the j index can be eliminated by recalling that the determinant of
a matrix vanishes when two rows or two columns are identical. Therefore,

D 0X; 0X 0X;
E(dVOL| CURRENT /= G_)QIH[G_X] Xm 'dX2 'dX3 = G_Xi.dVOL| CURRENT
since,
dii = &
0X;

there results,

II))t (dVOL| CURRENT )

dVOL| CURRENT

1

For the determination of expressions for differential elements of surface area take
two non-parallel vectors like B, defined at the beginning of this section, emanating from

the same point. Denote these vectors d§ and d§ and then define,

d§| REFERENCE — dga \7(1

—

d§| REFERENCE = dga "V,

The differential area defined by these vectors is dA and it is equal to d§ X d§ so that,
dA| REFERENCE = Capy 'va 'dgﬁ 'dsy

so that the a component is,



38

dAoc|REFERENCE = Copy 'dsﬁ 'dSY

In the current configuration, using the Chapman distorted base vectors, the differential
area is derived as follows,

S AV < 0X,
ds =dS ‘V =dS - iy
|CURRENT a Vo o an .
dS| CURRENT = dSa 'Va = dSOt : IX "V,

a

and denoting the area component in the current configuration as da, | rrent results in,

o 0X, ~ 00X
da;| cuprent = Ciik '(dsa ) E)XJ ) dS[S : an
o ]
dX. 9 - ~
=y -%-dsm-dsB
o B
—e. .aXl .aXY.aXJ .axk .dS -dS
oax, ox, oX, ax, '
_le 9% 9% 9%, -aXY-dﬁ -dS
ooX, 0X, X, ) ox, ¢ °

.aXY .

X,

X, -
‘e ——-dS, -dS, =

yap

~ ~

The time rate of change of da, | current 18 found using,

v | REFERENCE

D (9x,(X,t)) 9%, ax,
Dt| oX, 90X, ox,

J

and the last equation as follows,
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D
Dt

axj D
X, Dt

00X,
X,

(dai|CURRENT )= Cik .dga 'dg[s

D an an
+_ —_— . —
Dt|0X, | 9X,

0X; 9x, .6Xm+8xk_axl'6 X,

X, 0X, ™ ox, X, X, ™ ox,

— Vijk

-dS, -dS,

8xj.axl.axk.aXY.ameraxk.axl.6xj.aXY'axm
0X, oX;, doX,  odx, oJx;, X, dX, dX  9dx, OX,

00X, 9% X, 9% -
fep, ot OXn 1.2%m .43, -dS,
ox, O0X,

e .

Poax. 09X,
d X IX, 9%
0X

X < .2 dX
€up #-dS,-dS; =-2-—"-da

0x, 0x, 0X;
Note that the step between the third and fourth lines in the above equation uses the fact
that the determinate of a matrix with a repeated row or column vanishes.

Ciik

)'dga-déﬁ

m | CURRENT
i
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IV.2 SOME CONCEPTS FROM MECHANICS

In mechanics of deformable bodies a “physical” particle has special meaning. It
is an infinitesimal size volume, dVP, that has a density of p (> 0). The particle has a
differential mass, dM, equal to p-dVPthat remains the same when the configuration
changes. A body is defined here as a region, R, (includes boundary points) filled (no
voids) with a fixed (in time) collection of particles. Each particle inside the body has its
entire surface, S, in contact with other particles contained in the body. The surface of the
body is composed entirely of the boundary particles. Furthermore, the surface of the
body contains all the surface elements of all the particles in the body. Each particle is
defined by its reference coordinates, X. and, since the particles have infinitesimal sizes,
the body is considered to be a continuum.

Force. dF , is a differential vector quantity that, in the absence of other
influences, causes a particle to change its velocity vector relative to a spatial coordinate
system [x] (assumed to be an inertial coordinate system).

The acceleration of a particle, Aa, is the instantaneous time rate of change of the
velocity of the particle with respect to a spatial, inertial coordinate system. That is,

2
A*_B(M.V)J&_(XJ).V
Dt

- ot ‘ ot? ‘

As A s a vector it may be expressed as,

A=%-v.=X -V

1 1 [e3 (e}

where X and X are components of acceleration referred to the current and reference
coordinate systems, respectively.

With the above definitions Newton’s second law for a particle is,
dF =dM-A’

The nature of the force acting on a particle is restricted according to the following
definitions.

it
1

dF =F -dM +dF +dF +F -dM
where,

F -dM is from external sources such as gravity, assumed bounded
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dF s applied to the surface S of the body, assumed continuously distributed

I

dF is from contact with contiguous particles appearing as opposing equal forces lying
on a common line of action

Il

F -dM is from particles in R, not from contact appearing as opposing equal forces lying
on a common line of action

Now sum all of the forces on particles in R at a fixed time. This summation has

no net contribution from dF or F -dM owing to opposing equal forces cancelling. The
result is,

dF +(F -dM = [A -dM
JoF e raef
and with dM = p-dVP,
= [p-F A )avp
[ o

which is Newton’s linear momentum law for a body.

The linear momentum law derivation did not take into account the line of action

IIE
Il

restrictions on forces dF  and F -dM. Satisfaction of these restrictions can be ensured
if a second integral is formed. Take an arbitrary point O in the spatial coordinate system
and consider a deformed, force-loaded body at a fixed time. Let the vector from point O
to the a™ particle be t, and form the cross product with Newton’s linear momentum law

to obtain, with obvious notation,
i xdF. =% xdM, ‘A,

This equation, as it stands, does not give any new information to the theory. When this

I

last equation is summed over all the particles in the body, the contribution from dF
vanishes as the contact loads are collinear and opposed. To find the contribution from

Il

F -dM for the summation consider the sketch below showing two particles, a and b, in
the summation.



particle b

particle a

By postulating,

1

dM, + T, xF  -dM, =& - T )xF -dM,

42

Since the vector (f, - T, ) is parallel to Fthe right hand side of the above equation is

zero. This result applies to every pair of particles in the body so that the contribution to

the summation from F  is zero. The equation resulting from the summation is,

ixdF = [p-F (F: A*)dVP
!rx {p T X +

This last equation is Newton’s angular momentum law for the body. In the following
work the linear and angular momentum laws derived above are assumed valid for every
continuous body with constant mass and every sub region therefrom at every instant of

time.
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IV.3 STRESS

Consider two non-collinear, differential length vectors, dx and d% , defined in the

current coordinate system. They can be used to define an area da with components da;
that has second order differential length given by,

da =dxxdx =ey -dX; dx, -v, =da, -V,

1

Another way of arriving at this result is through the sketch below showing the inclined
vector for the shaded area and its components with implied directions.
X,

4

da,

—
da; -v;

da,

da
X5 7

In general for a closed single surface, S, f n-dS =0 where n is the outward, unit normal
S

vector and dS is the differential surface area. Applying this geometric restriction to the
four-sided figure in the sketch yields,

dd = da, -V,

which is the same as the result given at the start of this section.

Now describe the net contact force on the inclined area in its spatial components
as df |i . This force has three components so it may be written as,

df|i =s; "da;

where the coefficients s; are the stresses and they are, in general, finite but supposed to
be bounded. This formulation can be applied to any da so that,
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It

dF =df|i "V, =5 -da. v,

] 1

In this form it is clear that s;; is a second rank tensor.

I

For subsequent work two additional requirements are imposed on dF . They
are,

I

1. dF is distributed within the region R so that s;; and its first derivative are continuous.
2. As an element of area, parallel to the tangent plane at any point on the surface of the

I

region R, is taken at interior points closer and closer to the point P, dF  approaches

dF for the surface point in the limit.
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IV.4 RESTRICTIONS ON THE STRESS TENSOR FROM NEWTON’S LAWS

Any stress distribution in a body or sub body must satisfy Newton’s linear and
angular momentum laws. The ways that these laws restrict stress distributions is
presented in this section. Recall that stress, sj;, is defined from,

and it may be used with other continuity conditions already imposed to introduce stress
into the linear and angular momentum laws. The linear momentum law,

de: =fp- (F; + A#)dVP

S R

becomes,

[35-%-da; = fo-(-F + %, )5, -avp

S R

Gauss’ theorem can be applied to the left hand side of this equation to obtain,
[s579,da; = [, -, }ave

) ij i ] ) an ij i

so that,

= N ds; ) -
f—p-fi+p-xi— LV, -dVP =0
R aXJ

This equation must apply for every sub region of R so the integrand must vanish
everywhere in R. This yields the usual form for the linear momentum law,

as; = .
Capef, =pek
0X .

]

and it must be satisfied everywhere in R.

The angular momentum law gives a second restriction on the stress tensor.
Following the same procedure as for the linear momentum law yields,
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[Exsy ¥ -day = fpix (T + %}, -dvp
S R

After applying Gauss’ theorem to the left hand side of this equation and converting the
vectors to component form, there results,

alr. -
o

R

—prey ot (T, + xk)]-vi -dVP =0
Since this is valid for every sub region of R the integrand must vanish in R so that,

=0

ar, 98y, - .
i | Sk +1;° +p-f, —p-X,
axq axq

The term multiplying r; vanishes in view of the linear momentum law and,

arj _
iq
8xq

so the angular momentum law reduces to,

i Sy =0
or,
Skj = Sjk

and the restriction from the angular momentum law on the stress tensor is that it is
symmetric.
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IV.S STRESS TENSORS IN THE REFERENCE CONFIGURATION

From a physical viewpoint it is natural to develop the concept of stress from the
differential current contact force acting on a differential area in the current configuration.
That procedure was followed in the preceding section and the stress, sj;, was defined. In
this section a stress is defined using the current differential contact force acting on a
differential area in the reference configuration. This differential area is the area in the
reference configuration that corresponds to the differential area in the current
configuration that the differential contact force is acting upon. To accomplish this some
groundwork must precede the definition of the new stress.

I

The differential contact force,dF , may be resolved in the reference
configuration as,

Il

The differential area vector dA| rer Of an element in the reference configuration can also

be resolved into its reference configuration components as,

d‘&| REF = dA(x|REF -V,

o

Now a material stress S, is defined using,

=S

Sl

d dA B | REF

ocB.

S =
“ are assumed to be continuous. Also, dF — dF as the surface S

and &, as well as

Y

1s approached so dF = S 'dAﬁ|REF -\7(1. Since mass is conserved,
dM =p-dVR =p, *dVR|

where 1o is the mass density of the particle in the reference configuration and
R — R, while S = S, so the linear momentum law becomes,

This form results after the same arguments used in the spatial case concerning the forces
on a particle are introduced. Gauss’ theorem may be applied to the first term to obtain,
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; 9 , L9
isaﬁ-Va-dAngp =IKGO¢;'V“)dVR|REF =fVa-K(Saﬁ)dVR|REF

Ro Ro

so that,

9 = .
@(Suﬁ)‘*' po'(Fa _X) 'dVR|REF =0

[V

Ro

Since this integral must vanish for every sub region of Ro, the integrand must vanish at
every point in R so,

9 = .
K(Saﬁ )"‘ Po E, =po-X

The linear momentum law requires that this equation be valid in Ro.

To determine restrictions on &,, imposed by the angular momentum law, the cross

product of the position vector R with the linear momentum law is formed and the
arguments concerning lines of action between particles used in the spatial formulation.are

introduced. Note that R must be measured in the spatial coordinate system in order to be
consistent with Newton’s law. The result is,

fecx[iy R|3 .Syé.v 'dA6|REF + feo.ﬁy R[S .pO .(?0. _X).v(x dVR REF =O

Application of Gauss’ theorem yields,

d = .
feaﬁv .(GX (RB .SY5)+ RB "Po '(Fa _X))'Va -dVR REF =0
R, 8

so that,

- X))]'Va - dVR| = 0

et

0R 0S

B )
€ o | —S. +R, ‘[ —=+ .
Rfo oby (aX6 v d (an Po (

d
Since this equation must be satisfied for every sub region of Ro,

IR,

ofy =0 fora=1,2,3
X

€
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This equation gives the restriction on &, from the angular momentum law. Recalling
that,

oR X, -~
a =i-{/i oVu
0X, 0X,

it is clear that &, is not generally symmetric.

To obtain a relationship between &,, and s;; the following results presented earlier
are used as a starting point.

dF = Sjj 'daj|CURRENT v, = Saﬁ ’dAf5|REF 'V

The quantity da j| current 18 @ differential area in the current configuration while dA |,

is the corresponding differential area in the reference configuration. The relation
between these areas has been derived in an earlier section and is repeated here,

0x
da. =||—
i | CURRENT H[ aX]

When the last two equations are combined, the result is,

X,
X,

-dA

y|REF

Sﬁ={}ioV. a_X

0X

.6Xﬁ.

an

Q, a ij

The complexity of using &, in analysis, primarily because it is not symmetric, makes this
definition for stress virtually unused.

In order to be able to formulate theories expressed in the reference configurations
coordinates, the Kirchhoff stress tensor, S,, often appears in the literature. It has the
definition,

Il

- ax.,

dF =SV, -dAﬁ|REF =S, aXI v, -dAﬁ|REF

a

and

dF = S 'daj CURRENT ~ Vi

1

Equating the right hand sides of the last two equations and using,



50

ox]| X
da. =||—=[|-—--dA
1|CURRENT H[&X] ox, y|REF
yields,
00X aXﬁ aXi
S5 - [G_X ) ox 'dA[3|REF = SaB 'GT'dA[5|REF
1 o

o d oy e .
now multiplying by a;k with implied summation to get,
B

C0x; 0Xy
X, X,

B|REF

°S

. _[rex
ik aX

This equation may be inverted to obtain,
0X
0X

As sjj is symmetric, so is S,,.

09X, 90X,
ox; X

ap = Sij

The linear momentum law for S, may be obtained by substituting the second-to-

last equation into,

The angular momentum law is satisfied owing to the requirement of symmetry of s;; and

thus of S.,.
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IV.6 EXTREME VALUES OF THE SHEAR AND NORMAL STRESSES
This section determines several useful results concerning stresses. The results are
applicable to any real, symmetric second rank matrix. To simplify the presentation the
derivations use the principal stresses sy, sy, sy which can always be found. Assume the
principle stresses are ordered so that,

Sl = Sll = SllI

and the stress matrix is,

s, 00
[S]E 0 s; 0
0 0 sy

Now consider a four sided, differential size element with three of the sides
perpendicular to the three, perpendicular principal directions. The element is sketched
below.

X))
+ Sy

dT /
i

dN = magnitude of normal force on inclined face

dT = magnitude of shear force on inclined face

Xt

l

Sy

In the figure above the stresses on the three principal stress faces are sy, sy, sy The areas
of the three faces are da,, da,;, da,; and the area of the inclined face is,

di=-(dd, +da, +dd,,)
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The forces on the three faces are s, -da,,s,-da,,s, ~da,. The force on the inclined

area is resolved into a normal component of magnitude, dN , and a shear component
parallel to the plane of the inclined face of magnitude, dT . Now define,

N = normal stress = —
dal

T = shear stress = ——
dal

In order to resolve the forces into their components, the following definitions are
introduced,

dd |’ v
= = / da.d
UG +|da] + |da] cos* (¢ da, da, )
da,|” 2
= = / da,d
"G+ |da [+ cos’ (¢ da. da, )
|d§111|2

=cos’(2 da, da )

Vim =" Y N
|dal| +|da”| +|da“l

|2

The requirement that the net force on the four-sided element be zero is,
Sl2 Vit S112 Vit S1112 Vi = N? +T°

Force equilibrium in the direction perpendicular to the inclined face gives,
Sy Vi 8y Vy + Sy vy =N

From the definitions of vy, vy, Vi there results,

VitV +v =1

These last three equations may be written in matrix form as,

2 2 2 2 2
S, S, Sy v, N +T
S; Sy Sy [|VYu | = N

1 1 1 Vi 1

The determinant of the coefficient matrix is,
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2 2 2
Si Sy Sy

St Sy Sy ||= (SI — Sy ) (Su —Sm ) (Sl - Sm)
1 1 1

First consider the case of the principal values of stress having distinct values so that s; >
sir > s so that the determinant is greater than zero. In this case the solution for vy, vy, Viip
18,

v =T2+(N_SH)'(N_SHI)
I (Sl =Sy ) (SI - Sm)
v =_T2+(N_SIH)'(N_SI)
! (SII =Sy ) (SI ~ Sy
T +(N_SI)'(N_SH)

V.. o=
" (SI —Sm ) (SII - SIII)

The values of vy, vy, vin must all be greater than zero in order that the angles they are
defined by be real. Therefore,

T +(N_Sn)'(N_sm)ZO
T? +(N—sm)-(N—sI)50
T2+ (N-s,)(N-s,)=0

When T is plotted versus N, the three inequalities determine regions that are admissible.
The shaded regions for each inequality are shown in the sketches below.

T T T

a2

When the restrictions from the three inequalities are combined, the result is shown below.
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v

The limits of the admissible values for the normal stresses are seen to be s; < N < sy
while the limits of the shear stress are 0 < T < %-(sl - Sy ), These useful results are the

bases of criteria used in machine design calculations to avoid failures of structures.

The derivation for cases of repeated principal stresses follows the same scheme.
The results are consistent with a graphical interpretation of the above sketch. That is,
when two principal stresses are equal and distinct from the third, the sketch reduces to a
circle. If s; = sy = sy then the admissible region degenerates to a point.
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V STRESS RATE
V.1 PRELIMINARY CONSIDERATIONS

The concept of stress rate pursued here is for use in constitutive equations where
the response of a material depends on its loading as well as the time rate of change of
loading. Some viscoelastic materials, by definition, have physical behaviors that require
consideration of the current stress state and the time rate of change of stress. The
definition of an acceptable stress rate, for example, should not be influenced by a rigid
body motion if the stresses are not altered relative to the body.

Other physical considerations enter into the development of a mathematical
definition of stress rate. To illustrate, imagine that a differential area element is
composed of a layer with a fixed number of particles. During a general motion this layer
will change size. In the simple case where the stress field is a constant, uniform pressure
the normal stress on the layer does not change and the stress rate could be considered to
be zero. On the other hand, the load per particle changes and, assuming the material
response is influenced by the load per particle, the stress rate will be nontrivial. It is not
surprising that different definitions for stress rate appear in the literature.

Results from Section IV suggest that it is more satisfying physically to restrict
considerations of stress to the definition of the current configuration stress, s;;, given by,

In this section the definitions for stress rate are all given in terms of s;;.

Since any acceptable definition of stress rate must be insensitive to certain cases
of rigid body motion, it is helpful to introduce vorticity at this point in the development.
Vorticity is a tensor related to the rotation rate of a body. Start with the earlier result that,

X, O0X;
dy=3 |2+~
ox;  0x;

1

and define the vorticity tensor, wj;, using,

0X.
0% 4w,
ij

so that,
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This equation shows that the vorticity matrix, [w], is asymmetric with the following
properties,

Wy = -0 if =]

w; =0 if i =

Consequently, [w] has the form,

0 W, W
ED]_ P 0 o3
— Wy W53 0
with,
W, =73 OX 0%
0x,  0x,
Wy =-73 8X3_9§L
0x,  0X,
o, =1 X, 0%,
0x;  0X,

In many developments of fluid mechanics theory the vorticity vector is defined in
conventional vector notation as the curl of the velocity vector,

v( A B )(Jk)

0x, 0X,
_ (9%, _8x2 +J X,  9X; Lk X, dX,
0x, 0x;  0oX, ox, 0x,
=120 +J2u)31+k2u)]256)
leading to,
W, =2,
W, =2,
W, =2 m,

or,

W; =Sy "Wy
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The usual fluid mechanics formulation is consistent with the presentation in this work.

A simple example will serve to illustrate the interaction of the motion and the rate
of change of stress. Consider the sketch below of an elastic bar with a uniform, constant,
axial stress, 0. The axis of the bar is initially (t = 0) in the x direction and is being rotated
in the xy plane at the constant rate of rotation, Q.

S "

(o)

It is clear that for this example both the deformation rate, [d], and the stress rate vanish.
The substantial time derivative of the stress is,

Lg-(l+cos2-Q-t)  L-o-sin2-Q-t) 0
Ds; 9ds; sy . 1 ] 1
Dt - at +an-xk=E 70-51(r)1(2-£2-t) 7-0-(10—cos(2-9-t)) (())

—o-Q-sin(Q-t) o-Q-cos(Q-t) 0
=| o-Q-cos(@-t) G-Q-sin(Q-t) 0
0 0 0

Although this is the correct answer for the way the spatial stress components are
changing, it does not represent a valid measure for the stress rate to be included in a
constitutive equation.

For example, suppose a constitutive equation is postulated to have the stress rate
equal to a function of the deformation rate. If the motion considered is a rigid body
motion then all the components of [d] vanish but as shown above the components of

Dsij

do not vanish. Another way of looking at this is that we have defined strain and

Dt
deformation rate to vanish when the motion is a rigid body motion but the same is not
Sjj . . .
true of L. Consequently, a different formulation for an acceptable stress rate is
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required. To help in the development of acceptable forms for the stress rate, a few
preliminary results are presented below.

The motion of a differential length line element fixed in the material is now
investigated. Consider two particles P and Q. In the current configuration P has

coordinates x; and Q has coordinates x; + dx; and the vector joining the particles, A , 18,

A=dx;-¥, and |A]=dx; dx,

1 1
Since v, is independent of time,

DA 9%,

= dx
Dt X !

<!

Define a second differential length vector, B, emanating from x; but with a different
change of spatial coordinates, dX, to particle M so that,

. . o DB 9%, . _
B=dx. -v. , ‘B‘=dx~dx. and —=l-v.-dx‘
' 1 Dt 9x, 1 !

The dot product of these two vectors yields,
A*B=dx, -dX,

and,

D ( =)\ 90X, _ 0X. _ X, _ _

a@’B)=aTXk‘-dxk-dxi+aTXk‘-dxi-dxk=TXl:~(dxk-dxi+dXi-ka)
= (dy - oy ) (dx, dx; +dx; -dx, )

Now note that,

o, - (dx, X, +dx, -dx, )= (0, + 0, )-dx, -dX, =0

owing to the asymmetry of w;j. Combining the last two equations gives,
D = _ _ _
E(A‘ B)-d, -(dx, -d%, + dx, -dx, )=2-d,, -dx, -d¥,

owing to the symmetry of d;;.
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For the special case at particle P where the x; directions are in the principal
directions for [d], this makes [d] a diagonal matrix. Let A be directed in one of the
principal directions while B is directed in one of the other principal directions. The last

) o . D (o=
equation shows that, in this specific case, E(A . B)= 0 so that the vectors are not only

perpendicular but their rate of change with time is such that they remain perpendicular
through first order terms in At. This result shows that a cube aligned with the principal
directions of [d] at time t remains, through first order terms in At, a rectangular
parallelepiped at t + At.

The next item for investigation is to find the time derivative of a unit length
vector fixed in the material and directed in a principal direction of [d]. Take the vector

A defined above and form a unit length vector A parallel to A as,

A V-dx

‘;‘;‘ Jdx, dx

The time derivative of this vector is,

>

0X. 9X;

= -odx; dx; -dx - dx,
% -V - 0%, _ X, :
Dt i [dx -dx (de .dxmﬁ
=9, - (@, -, ), _ (6 - o, b, dx;dx,
i 3
\ldxm .de (de .dxmﬁ

Let the x; directions be principal directions for [d] at point P so that,

and take dx; = 1, dx, = dx3 = 0 so that,

DA -

Dp | &2 =ds =0 =—V; Wy

The same scheme can be followed for the other principal directions so,
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Recall that A is a unit length vector at point P and that the last equation was derived for
the special case that the x; directions coincide with the principal directions of [d] at point
P.

The remainder of Section V reviews four proposed definitions for stress rate that
appear in the Continuum Mechanics literature. They were proposed by,

1. G.Jaumann, 1911

2. C. Truesdell, 1953

3. B. A. Cotter and R. S. Rivlin, 1955
4. J. G. Oldroyd, 1956

The derivations for the definitions are given first. Following this a few examples are
presented to give a physical picture of the differences between the definitions.
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V.2 JAUMANN STRESS RATE

The derivation for this stress rate definition is based on taking the substantial time
derivative for a differential size parallelepiped fixed in the material and with edges
aligned with the principal directions of [d]. This derivative is then transformed to spatial
coordinates in the current configuration.

As usual, the base vectors in the spatial coordinates arev,. Now, at a generic

point, determine the unit length base Vectorsﬁi, that are parallel to the principal

directions for the deformation rate, [d], at that point. The stress state s; in the spatial
coordinates is transformed into the orientation of the principal directions of [d] using,

Sij =S84 "Cy "Cy

where, from earlier results,
Cik =V Vi

and §; is the stress state in the new orientation. Recalling that V, is a set of unit length

vectors and the derivation presented in the preceding section for unit length vectors fixed
in the material leads to,

D ( lk) Dy, *V, =—6--'$‘°{/k =—.

—\C. = ;
Dt Dt Y
Since wjj is a second rank tensor the transformation from [m]to [6] is given by,

®: =W, "C,"C.

ji jl im

Combining the last two equations and recalling that [c] is orthogonal ([c]" = [c]") yields,
Cik)= —W, "Cy Ciy "C =T Wy, “Cyy Oy = -0, "Ciy

Now take the substantial time derivative of s; to obtain,

2(le)

D
(u) (Skl)ck Cy Sy Dt(cik)'cj1+sk1'cik'Dt

=H(Skl)'cik TCh TSy T Wy TGy TGy T Sy TGy "Wy TGy

1k C ( (skl) ml .U‘)mk - Skm .U‘)ml)
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In order for all the components of this derivative to vanish, the quantities multiplying the

coefficient ¢, -c; , must vanish. These quantities are defined in the current configuration

and they are the basis of Jaumann’s stress rate definition, $;|;,yman » Which is,

) D( )
Sij| saumanN = Dt Sij )7 Smj O = Sim ~ Wy

or,

I8 Lcnano = [D% (s)] +[o}fs]-[sHeo]
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V.3 TRUESDELL STRESS RATE

This definition of stress rate is derived from the Kirchhoff stress tensor. It is
noted that the Kirchhoff stress does not have a straightforward physical interpretation so
this definition is more a mathematical one than a physical one. The fact that
mathematical analyses of elasticity problems related to the reference configuration often
use the Kirchhoff stress has probably prompted this definition.

Recall the definition of the Kirchhoff stress is,

0X X, BXB
o =Si ==l .
oxX || o0x;  9x;
or,
0X ox. 0
Sik = ||| >~ 'Saﬁ' 0
0x X, 0Xg

This stress rate will be based on Bt (S b ) based on the above equation as follows,

D D (|[oX ax; 0X; Ix; 0X;
s )= = I[Z21]-s - 220
Dt(”) Dt [6){]] P aX, aXB [8){] 6 ) X
X D (dx, dx; D (09X
i e 'Saﬁ'_ Sup-
0x Dt aXB X, Dt 0Xp
0 X oX]| D Ix; 0X; 0X dX; d 0X;
S St '_(Saﬁ) - + SaB X, Il
0Xy ox || Dt X, 0Xg 0x 0X, 6X 0Xg
IX; 9x; X
S ox, 90X, 9Xg
= ( ) - Sy Sy T Sy ——
Xp  0Xy 0X, 0X,
so that,
D X7 90X, 9Xp ax dX, 9X;
(aB) (5) —k. — Sy =S .
0x ox;  0X; . 0x,
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The stress rate is defined to be zero when all of the components of % (S(x[i ] vanish. This

provides an acceptable stress rate, $;| ryespeLr » 855

1

§. —§. - —-S..
! 1
X, 70X, Yoox,

. D d%, ax. ax,
S.. =—N\S. )+ . .
ij | TRUESDELL Dt ( ij ) a

or,

s - [26] 00 B [2] 81 B[]
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V.4 COTTER-RIVLIN STRESS RATE

This definition for stress rate is similar to the Jaumann definition. In this case the
new “base vectors”, V,, are fixed in the material and referred to the current configuration.

Initially these vectors coincide with the spatial base vectors so they are initially unit
length vectors but their length and orientation change with time. That is, the
transformation between this material coordinate system and the current configuration is
initially c;; = ;; but it is not constant in time. This transformation is,

<U

Cie =Vi*V,

so that,

D )aD g ho, o055 ey, 0%
Dt 7 Dt~ ax, T f ax, F

Let 5, be the transformed stress and take its substantial derivative to obtain,

2(Clj)

D D D
- Skl)= Ht(sij)cki Gy Sy '_(Cki )'Clj +8;°Cy°

Dt Dt Dt
D 9 X, X,
=Et(sij)cki O Sy ox. “Cmi "Cyj + Sy 'E’Cki "Con

Since, at the instant of evaluation, cj; = dj;,

D §)—D(s )+s Xy g 9K
Dt kl Dt ki ml an km ox

m

This last expression is defined as the Cotter-Rivlin stress rate, $;|correr_rivin > SO5

: D( ) IxX . 0X;
8§j| COTTER-RIVLIN = Dt Sij )T S~ % + S ox
i

m

B %(sij )"‘ S mj (s =0 )+ 50 '(djm - wim)
o[22 0[]
-[26)] 2 B bl ol
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V.5 OLDROYD STRESS RATE

This definition is similar to the Truesdell definition as it starts with a stress, §.,,

referred to the reference configuration. The physical basis for the stress is not obvious
from its definition which is,

X 0X
S . =s «. " P

@O o, ax,

so that,

0X. GXJ-
S. = .
ij ap

X, X,

Take the substantial time derivative of s;; to find,

D D ax, X, D(adx; )| 9Xx; dx; D {(0X;
_(Sij)=_(s aﬁ)_' S+ S :
Dt Dt X, X, Dt| X, | 9X, 0X, Dt|aX,
D ax, 0X; Ix, dx, 0X; 0X; dx, dx
=_S — 1. J + . 1. L. J + . J. !, 1
Dt( “ﬁ)aXa X, P oax, X, X, P oax, aX, X,
D ax, 0X; aX, 0X.
=_Soc[3) S sy
Dt X, 90X, 0x, 0x,

so that,

D 0X 00X D 0X dX
= (s 2 le B G Yoy 20k g D %m
Dt( aﬁ) 0x, 0x, Dt( km) m 0X, M X,

. . D
The Oldroyd stress rate, Sij|OLDROYD , vanishes when all the components of —t(S aﬁ)
vanish and it is,

Sm | oLDROYD = B(Skm)_ Sim * Xy — Sy WX
Dt 0x, .

or,

EJocorov = [D%(s)] _ [ g_;c ] LB [ % ]



Note that,

8i| TRUESDELL = Sij|oLproyD T Sji

I%,

0X

67



68

V.6 ILLUSTRATIVE EXAMPLES
EXAMPLE 1 - ROTATION UNDER TENSION (revisiting earlier problem)

In Section V.1 the case of a rod under tension, o, in the x;-x; plane rotating at an
. . D ) .
angular rate of €2 about the x; axis was studied to show that E(Sij] is not a valid stress

rate for use in a constitutive equation. This illustrative example gives the results of
finding the stress rates according to the four definitions reviewed above. The motion for
this case is,

X, =-Q-Xx,
X, =Q-Xx,
so that,
0 0 O
[d]={0 0 o
0 0 O

0Q 0
[w]=]-@ 0 o
0 0 0

and from the earlier consideration,

Lo-(l+cos2-Q-t) L-o-sin2-Q-t) 0
[s]=| 1-0-sin(2-Q-t) L-o-(+cos2-Qt) 0
0 0 0

—O-Q-sin(Q-t) O-Q-COS(Q-‘[) 0

Ds, .
DtJ =| 0-Q-cos(Qt) o-Q-sin(Q-t) 0
0 0 0

The results for this illustrative example are given below.
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—o-Q-sin(Q-t) G-Q-COS(Q-‘[) 0
Sii| raumann = o-Q-cos(Q-t) G-Q-sin(Q-t) 0

0 0 0
0 -Q 0] [+-o-(+cos2-Q-t) L-o-sin2-Q-t) 0
-l @ 0 o] Lt-osin2Qt) L-o-(-cos2:Qt)) 0
0 0 0 0 0
Lo (+cos2-Q-t)) L-osin2-Q-t) 0 0 Q
-] L-o-sin(2-Qt)  L-o-(-cos(2-Q-t)) 0| [-Q 0
0 0 0 0 0 0
0 0 0
=0 0 0
0 0 0

—0-Q-sin(Q@-t) 0-Q-cos(@-t) 0
$i| oLorOYD = o-Q-cos(Q-t) o-Q-sin(Q-t) 0

0 0 0
0 -Q 0] [+-o(+cos2-Q-t)) 1-o-sin(2-Q-t) 0
-l @ o0 of| Ltosin@Qt) Llo(-cos2-Qt)) 0
0 0 0 0 0 0
L-o-(1+cos2:Q-t)) 1 0-sin2-Q-t) 0 0Q 0
| tosin@Qt)  Loo(l-cos2-Qt) 0 [[-Q 0 0
0 0 0 0 0 0
0 0 0
=0 0 o0
0 0 0

Since all d;; vanish,

Sij| coTTER-RIVLIN = Sij| JAUMANN and Sij| TRUESDELL = Sij| oLDROYD

As expected, all four stress rates vanish for this case.



EXAMPLE 2 - RECTANGULAR MOTION

The equations governing this motion are (A t>-1,B-t>1,C-t>1),

A.
x, =X, (+At) X =—2 X, =A-X, =—
I+A-t I+A-t
X B-x
x,=X,-(-B-t) X,=—2 X,=-B-X, =— 2
2 2( ) 21 B¢ 2 21 B¢
C.
x, =X, (1-C-t) X3=1_Xé.t x3=—c-x3=1_éﬁt

The stress state has only normal components, is constant in time and given by,

s, 0 O
[s]= 0 s, O
0 0 s,

For the motion,

A 0 0
1+A-t
[d]=] o B 0
1-B-t
0 0 -C
1-C-t
IX, A B C
=d, = - -
X, lI+At 1-B-t 1-C-t
A 0 0
1+A-t
% _ 0 -B 0
axj 1-B-t
0 0 -C
1-C-t




ful-

oS O O
oS O O
S O O

0 0
0 0
0 0

b 0
~ . )=1o0
[Dt (SJ%

0
The stress rates are,

0 0 O
Sij JAUMANN — 0 0 0
0 0 O
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Sij| TRUESDELL =

0 0 0
0 0 ofl+fA B __C )
I+At 1-B-t 1-C-t
0 0 0
T :
" s, 00
-1 0 -5 0 |0 s, 0
1-B-t
C 0 0 s,
0 0 —
1-C-t
max © O
s 0 01 7
-10 s, Of] O -8B 0
1-B-t
0 0 s, c
0 0 —
1-C-t

A

B

C

- - - s
1+At 1-B-t 1—C¢)1

o(A

C
+ - 'S,
I+A-t 1-B-t l—C-t)

0

B

s, 0 0
s, O
0 0 s,

(

A B
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C

-_— + .S3
I+A-t 1-B-t 1-C-t




0 0

Sij| COTTER-RIVLIN = 0 0

0 0

+10 s,

Sy

10

0

0
S,
0

0
0

S3

73
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a0
o 0o o |'T . s, 00
Silooroyp = [0 0 0] - 0 -B-t 0 110 s, 0
0 0 0 o |10 0
0 0 —
1-C-t
Ao o
s, 0 o1 "
-10 s, 0 0 B 0
1-B-t
0 0 s, C
0 0 —
1-C-t
_2-A-s, 0
I+A-t
_ 0 2:B-s, 0
1-B-t
0 0 2:C-s,
1-C-t

It is instructive to consider several special cases of the solution given above for
the four stress rates.

IfA>0,B=C=0ands; >0, s, =s3=0 then there is uniaxial straining with a constant
axial stress and the only nontrivial values of the stress rates are,

S11 | jaumann = 0

. | _ A'Sl
S11| TRUESDELL = 1+ A1

. | _ 2'A‘Sl
11| COTTER-RIVLIN = 1+ At
. | _ 2'A'Sl
S11|{oLDROYD = 1+ At

IfA>0,B=C=1-A ands; >0, s, =s3 =0 then at t = 0 this is extension under uniaxial

tension with initially constant volume motion and the only nontrivial values of the stress
rates are,
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Sll|JAUMANN =0

) 2-A-s,
Sll|TRUESDELL STl r A

) 2-A-s,
Sll|COTTER—RIVLIN 1t AL
. | 2'A'Sl
S11{OLDROYD = 1+ At

If A>0,B=C=-A and s; = s; = s3 = 0 then there is uniform expansion with a constant
hydrostatic stress and the only nontrivial values of the stress rates are,

S]1|JAUMANN = S22|JAUMANN = S33|JAUMANN =0

. ) ) Ao
Sll|TRUESDELL = S22|TRUESDELL = SS3|TRUESDELL =

1+A-t
. . . 2‘A'c
Sll|COTTER—RIVLrN = 522|COTTER—RIVLIN = 533|COTTER—RIVLIN = T+ At :
) . ) 2-A-o
Sll|OLDROYD = SZ2|OLDROYD =S833|OLDROYD =~ 7 .

I1+A-t
EXAMPLE 3 - SHEAR MOTION
reference
current

configuration configuration

The above sketch shows the shearing motion considered for this example. The
equations describing this motion are,



X, =X, +M-t-X, X, =x, -M-t-x, X, =M-X, =M-x,

X, =X, X, =X, X, =0

and the stress state is constant in time and given by,

0O T O
[s]= T 00
0 0 O
and,
D 0 0 O
—6. =10 0 0
[Dt(”%
0 0 O

The motion yields the following results,

. 0 M 0
[ZTXJ]= 0 0 0
0 0 0
0 1Mo
[d]=]2-M o0 o0
0 0 0
0 -1-M o0
[w]=]+M 0 o0
0 0

The four stress rates are now calculated.
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VI THERMODYNAMIC CONSIDERATIONS
VI.1 INTRODUCTION

A requirement from physical science is that any theory must conform to the
general results from Thermodynamics. The purpose of Section VI is to tie the results
given above to Classical Thermodynamics and to determine any constraints that must be
imposed on constitutive equations in order for them to conform to Classical
Thermodynamics. A brief review of Classical Thermodynamics is in an appendix
included at the end of this work.

In the case of a Continuum Mechanics formulation the system is a fixed mass
particle so that the stresses and strains may be considered uniform. The first essential
part of the Appendix concerns the First Law of Thermodynamics for fixed mass systems
which is expressed as,

q=E+W
where,
q = time rate of heat flow into the system from its exterior
= T-¢ for a reversible process
E = time rate of change of internal energy
W = time rate of work being done by the system on its exterior

In addition, define,

T = absolute temperature
S = time rate of change of entropy
P = mass density

When a specific constitutive equation is considered, it is often possible to
determine W explicitly. Substituting W into the first law and solving for § yields an
equation whose validity must be determined. The condition that s be a perfect
differential (i.e. s is a property dependent only on the state of the material) leads to a
condition that must be satisfied by E. When this condition is satisfied then the Inequality
of Clausis is valid and it becomes a way of expressing the Second Law of
Thermodynamics as,

d?qu?dszo

where the inequality becomes the equality only for a reversible cycle.
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A special, important result from Thermodynamics is that an equilibrium condition
is defined. This is accomplished by considering an isolated system (q and W are both
zero) and showing, based on the Inequality of Clausis, that any spontaneous change of the
thermodynamic properties will result in an increase in entropy of the system.
Equilibrium is defined as a stable state where no spontaneous change occurs in an
isolated system and it implies that E will be a minimum in this state. For small deviations
in the thermodynamic properties from the state being considered the conditions,

SE=0 and 8’E>0

must be satisfied where SE and 8°E are the first and second variations of E. It is noted
that the usual stability calculations concerning buckling of beams and other structures is
not covered by these considerations although the thermodynamic results can be extended
to cover structural stability.

Several common, elementary, constitutive equations are reviewed in the section
below. In each case, the expressions for E and § are determined as well as investigating
the conditions for an equilibrium state. In each case, the derivation is given in spatial
coordinates. These reviews show the kind of restrictions thermodynamics imposes on
constitutive equations.

V1.2 SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS
LINEAR THERMOELASTICITY

The constitutive equation relates the strains, ej, stresses, sj, and absolute
temperature, T, as,

ji =p-7:-(ekk —3»-01-(T-T0))-6ij +2-p-(ﬂ}-(eij —a-(T-TO)‘Sij]

where in terms of Young’s modulus, E, and Poisson’s ratio, v,

'71= V'E

P vy a-2v)
- E

PG = 2-(1+v)

and

a = thermal coefficient of linear expansion
p = mass density, a function of e;j and T
To = a constant reference temperature
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The parameters 5», G and o are constants so that, up to this point, E and v are functions of
ejand T.

The thermodynamic system under consideration is a particle whose mass is
constant. The rate of work done by this particle is,

Now assume the internal energy, E, is a function of e;; and T so that,

_ﬂ.é“ +ET

E_ i
ge, U oT

and the Thermodynamic First Law gives,

In order that s be a state function, the following condition must be satisfied,

O L [9E i) _ 0 (1 9E
JT| T {de; p de; \T aT

which gives,

When the thermoelasticity constitutive equation given above is substituted into this
condition, the result is,

ij
ae;;
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. dE .
Integration of e gives,
ij

E=%-i-(ekk)2 +CA}'eij ey + 6-i+2-G)a-TO “Cx +H(T)

then,
q=6-i+2-f})a-T-ékk+aH(T)-T
. - -\ . OH(T) T
=B1+2-G . el Sl

S 6 + )oc € + T

In order to relate H(T) to a physically familiar quantity, note that T is an independent
thermodynamic property and when the strain rates are zero the value of q is,

dH(T)
9T

&j=0

Foey T

where cy is the specific heat at constant volume and assumed to be constant. Then. H(T)
may be written as,

H(T)=c, - (T-T))

where T is a constant of integration. Consequently, E may be written as,
E =%-7Av(ekk)2 + G-eij ‘e +Cy (T-T))

and,

q=(§-i+2-é)a-T-ékk +cV-T
s=(z-i+2~é)a-ekk +cv-%

In the case of linear thermoelasticity the constitutive equation is linearized with
respect to the strains and the temperature. This process causes the value of p to be a

constant in the constitutive equation and then E and v are also constants in accordance
with the usual thermoelastic theory.

When this constant mass thermoelastic system is isolated, the first variation of E,
OE, vanishes since E vanishes and the second variation, 62E, is positive definite as the
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quadratic quantity %-X-(ekk)z +G-e; ey is positive definite in ej. Consequently, the
system is stable.
The temperature, T, is the absolute temperature in the above derivation. When the

constitutive equation is used in problem solving, it is common to replace (T-To) with a
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius).

LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

The constitutive equation for this fluid may be written in terms of the stress, o,
the strain, e;;, the strain rate, €,, and absolute temperature, T, in the form,

ij°

oy = prh-éy 81j + 2'P'ﬁ'éij 4 P’C‘(ekk _ 3-(1-(T _ To))'sij

where,

A and i = volumetric and shear viscosities, constant material properties
C = elastic compressibility, constant material property

a = thermal coefficient of linear expansion, a constant

p = mass density, a function of ey and T

To = a constant reference temperature

This case of a fluid introduces new considerations to the determination of the internal
energy and the entropy functions. The presence of a viscosity implies that there is a
dissipation of energy within the material element owing to flow. When the system is
dissipative the entropy function cannot be derived using the constitutive equation in the
same way as given in the case of the thermoelastic material. By assuming that E is a
function of e;,¢; and T and proceeding in same way as the thermoelastic material
derivation shows there is no entropy function that is a state variable. When dissipation is
present it is converted to heat and this must be reflected in the contributions to the first
law. This may be accomplished in this case by splitting the stress into two parts, oD;; and
oS;j. The stress , oDjj, 1s determined from the part of the constitutive equation causing
dissipation while the stress, oS;;, is determined from the part of the constitutive equation

contributing to the recoverable elastic strain energy as follows,

oDjj =p-A-€y 0 +2-p-p-¢y
GSU =p'C'(€kk —3'(1'T)'61j
oS, -¢;

y "y

p
energy, E, is a function of eix and T so that the first law gives,

The rate of work being done by the system is — Assume the internal
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. oE . dE . OS;-¢j oE oS5 JE
q= = : Cij

g +— T - ;i — & +—T
K aT

0€ dT p dey p

and the entropy production rate, §, is

i .

. 1 (0E oS;y . OE T
S=—- 0y — "€ +
T | dey, p OT T

In order for the entropy to be a state property,

oS 2 oS 2 2
_L.(OE.SN_ ‘J]+l-(aE-5.. a_( U))=%.8E=%.6E 5

T2 loey, ° p | T |0Toe, ° oT| p de 0T e T

Assuming the order of differentiation for the second derivatives are interchangeable, the
equation becomes,

d (Gsij]_csij _JE

o - 81j
aT{ p p 0€

When the constitutive equation for oS;; is substituted into the above equation, the result
1S,

0E

=C-(ey +3-0-T,)
0€

The last equation is integrated to give,

E=C-Leg’ +3-0-Ty e Jr J(T)

where J(T) is an arbitrary function of T. When E is substituted into the expressions for
heat flow rate and entropy production rate given above, the expressions become,

. - . dI(T) .
-3-0-T-C- T
q o € + T
s=3'a'6'ékk _,_dJ_(T)I
dT T

When ¢,, = 0, the heat flow rate is usually written as c,, - T with cy being the specific
heat. In this case,



84

dJ(T)
_ L = CV
dT

When cy is a constant, integration yields,
I(T)=cy-(T-T))

where T is a constant of integration. To summarize,
q=3-aT-C-éy +cy-T

-

s=3-0-C-éy +cy "=

E= é-ekkz +3-6-a-TO "€ T Cy -(T—Tl)

1.
2

The value of g in these equations is the total heat flow rate for the system and some is

generated internally while the remainder is supplied externally to the material element.
The internal heat flow rate, q, is,

. oDy-¢y . Y
dp =%= (X'ekk "0y +2'H'eij)eij

Now let the externally supplied heat flow rate be q so that,
q= f] +dp

and,

G=3-a-T-Céy +oy - T-Aéy’ —2-1-¢;-¢
ELASTIC, PERFECTLY-PLASTIC SOLID
The formulation investigated here is the one appearing in the text, Theory of

Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons,
Inc., 1951). The von Mises stress, Oy, 1s defined to be,

6o =g 6. LG 2
VM ~ \/2 ij ij 2 kk

and possible stress states must be such that,
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cSVM = csYP

where oyp is the yield point of the material, a constant. The strain is split into two parts.
The elastic strain, eEj;, is directly related to the stress state while the plastic strain, ePj, is

adjusted to be proportional to the reduced stress, 6; — 36, -8;. The total strain rate is
the sum of the elastic strain rate and the plastic strain rate, €E;; + ¢P;. The relationship

between the stress and the elastic strain is,
o = ()‘X-eEkk - (5-p-7:+2-p-Cv})0c-T)8ij +2~p-CV}-eEij

where the material parameter nomenclature is the same nomenclature used for the elastic
material considered above. The plastic strain changes over a loading increment when
Oyy = Oyp during the increment. This change is expressed by,

epP; = F-(cij - 310y -SU) while 6y, =0
eP. =0 otherwise

where I must be adjusted so that ¢,,, =c,,. Note that ¢P,, =0 so that the plastic

strains cause no rate of volume change. The rate of doing external work for the elastic
strain is assumed to be recoverable while the rate of doing work for the plastic strain is
assumed to be dissipated into a heat flow rate within the material element. Define these
as,

. Gl’eEl ~ ~ . ~ A
W, =—%=_(X'6Ekk - 6-%+2-G)a-T)eEkk —2'G‘eEij 'eEij
. Gij'éPij = 1 :

Wp = _T=_2'G’6Eu Too; — oy ;) while oy, =0,
W, =0 otherwise

Now assume that the internal energy, E, is a function of the elastic strain, eE;;, and
the temperature T. For this material the first law is written as,

q=E+WE

so that,
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B aill;ij_(X‘eEkk—(3‘7»+2-G)“'T)51j‘2'G'eEij ’éEijJr%.T
and,
S=%.(%EEU_($,6E&_(Q,.mz.(})aq)sij—z.é.eEij .éEij+%.%-T

In order for the entropy to be a property,

_le( o ‘@'eEkk ‘6‘X+2'G)“‘T)Sij ‘Z’G'eEij

+;( O°E +(’:'X+2~G)a'6ij

deE;; 9T deE;;
_1 _¥E
T deE; T

As usual, the order of differentiation of the second derivatives is assumed
interchangeable so that,

0E

=L-eEy -3; +2-G-eE;
aeEij kk ij ij

When this equation is integrated there results,

and,

4=6-7+2-G)a-T-¢Ey +—d1§§T)-T

. = =Y 1 9K(T) .
=B1L+2-G -¢E _ . -T
S 6 + )(1 [ kk+T 9T

Now define a specific heat at constant volume, cy, using,

q By — Cv T
to obtain,
_dK(T)

“vVETar
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where, obviously, cy is a function of temperature only. The heat flow rate and entropy
production rate may be written as,

q=06-7+2-G)a-T-¢Ey +cy T
S=6-X+2-G)a-éEkk +%'CV'T

Similar to the case for a fluid, the quantity q is the total heat flow rate in the material
element. The quantity WP is the rate of work for the plastic strain that is converted to a

heat flow rate. Let q be the externally supplied heat flow rate so that,

Al

INCOMPRESSIBLE BINGHAM MATERIAL.

The most common formulation neglects thermal expansion and elastic behavior of
the material and this approximation is employed here. This material has a yield point
stress that must be exceeded before the material can deform. When the yield stress is
exceeded, the material flows similar to a fluid but with the flow rate proportional to the
excess of the stress over the yield point stress. Let,

6o =% 6.6.-L-g. =2 J5. 6. -L-6.2 =31
VM T\ 2 ij ij 2 kk T V2 ij ij 3 kk T VM

where oy 1S the von Mises stress in tension and Tty 1S the von Mises stress in shear.
The yield point stress in shear is denoted by tTyp and it is the value of the von Mises stress
in simple shear that causes yielding of the material. For this material it is common to
formulate the constitutive equation in terms of the constant value of Typ. The constitutive
equation for the incompressible Bingham material is.

Oym V3 Ty (

2-p-e, = Gij—é-okk-ﬁij) when oy, = /3 1.,

ij
Ovm

2:pu-e;=0 otherwise

When this material undergoes deformation, the entire rate of work done by the stresses is

converted to a heat flow rate. Consequently, in the first law W =0. In addition, the

internal energy is assumed to be a function of temperature only. Under these conditions,
the first law becomes,

oE .
. _9E
a T
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and the entropy production rate is,

JE . .
Clearly, T may be interpreted as the specific heat at constant volume, cv, so that,
q=cy T
) T
S=Cy" ?

G "€,
During deformation, the quantity -—— is the heat flow rate internal to the material

element and,

Gij.éij = oM = Sty '(ﬂj'cij _%'Gkkz)z @VM _\/g'TYP)GVM , Oyum 2\/5'1?\(1’
p 2:p-Oyy 3-pu

so that the externally supplied heat flow rate, q., is,

~ - -3
Cl=cv'T+@VM {p?JP)GVM , Gy =3 Typ

q=cy T , otherwise

Owing to the assumption of incompressibility the mean stress, -0, , is indeterminate
from the deformation. A similar situation occurs in the case of any incompressible
material..

PENG-ROBINSON CUBIC EQUATION OF STATE

This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations. For a specified state (vapor or liquid) the equation
contains three constants, R, a and b. It relates the pressure, p, to the specific volume, v,

and temperature, T, as follows,

_R-T a
v-b Vv +2:b-v-b?

p
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For this case assume the internal energy is a function of the specific volume and the
temperature, E = E(v, T). The first law yields,

=g i 2

av JT
and then,
. q 1 (0E . OE T
S=—=—|—+p|'V+—"=
T T \ ov JoT T

In order for the entropy to be a state variable,

-1 (9E 1 (0°E adp) 1 9°E
_2. _+p +_. +_ _ .
T v T |oTov 0T T ovoT

Assuming the second derivatives are independent of the order of differentiation gives,

E+p_T.a_p=O
ov oT

When p is eliminated from this equation using the equation of state, the result is,

GE__

v vZ+2-b-v-b?

and integration gives,

. . — . 2
E = a -In 2:v+2-b \/8 b +L(T)
8-b* 2:v+2-b++/8-b?

so that

fRT o, dL(T)
v-b dT

The multiplier of T is the specific heat at constant volume, cv, so the heat flow rate and
entropy production rate become,

R-T

V_

V+cey, T

q:
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q R
T v-b

S = "VA4Cy

VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)

The sketch below is a conceptual description of this material. Although it is
helpful to represent the physical characteristics of the material with this sort of sketch, D.
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics,
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations
of such sketches.

oE;; = elastic stress

o, =stress =OE; + oV
—_—

oV;; = viscous stress

SNOANNANN

The contributions to the stress, oE;, and oVj, are taken as the classical
formulations for thermoelastic and viscous materials. The external work is associated
with oE; only as the work associated with oVj; is dissipated as heat in the material

element. The total stress is the sum of the two contributions so,

oE;; =p 2oy —3'a'T)'8ij +2'p'G'(eij _a'T'é‘)iJ'J

The internal energy, E, is assumed to be a function of oE;; and T only. The work term is

taken as — and then the first law becomes.
[
oE oE; 0E
(a— ] stor T
ij p

and



91

. q 1 (oE oBy)  9E T
S=_=_. — e = .ei.+_-_
'9T T

The condition that must be satisfied in order that the entropy, s, be a state variable is,

-1 (9E oBy) 1. (0°BE o (oBy)) 1 9°E
T> |de; p ) T |9Tade; oT| p T de;dT

Assuming the order of differentiation for the second derivatives may be interchanged,
this condition becomes,

9E oE i T a_ oE i
oe.. p oT{ p
When the constitutive equation is substituted into this condition, the result is,

ae;;

and integration gives,
2
E=3-ke, +Greje+ M(T)

with M(T) being an arbitrary function of temperature. Recognizing that the specific heat
at constant volume, cy, is related to M(T) through,

dM(T)
_ = CV
dT

yields,
q=0B1+2:G)a-T-é, +c, T
T

§=0BL+2:G)a-é, +cy T

p

Since the internally generated heat flow rate is — , the external heat flow rate, q,

is given by,
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GVU * eij

q=q+ =g+ héy’ 2 g€y
=B A+2:G)a-Téy +oy T+h-gy’ +2-1-¢;-¢;
MAXWELL MATERIAL
The sketch below gives a conceptual, physical understanding of the Maxwell

material. The strain has separate elastic and viscous components, ¢E;; and eVj;, that are
induced by the total stress, oj;.

©

m
L)
<

The analytical model developed here uses classical definitions to relate o, eE;
and eVj; as follows,

)
oy =P'7V(eEkk _3.a.T).5ij +2‘P'G'(eEij —a-T'Sij)

and the total strain rate, €., is defined as,

ij

ey = eEij + eVij

c..-¢E.
The external rate of work is — — L while the internal rate of work that is converted
p
) Gj *eVj . . )
to heat flow rate is — and the internal energy, E, is assumed to be a function of
p

eEjjand T only. The first law is,

o .
q=( OE __U).éEij +E-T

deE; p T
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and

aT T

The condition that entropy be a state variable is,

_L (2B o) L OB 0 (o)) 1 E_
T> |deE; p | T |dTaeE; oT| p T 0eE;oT

With the assumption that the order of differentiation may be interchanged, this equation
becomes,

Substitution of the constitutive equation into this equation gives,

0E
deE;;

=A-eEy, -6, +2-G-¢eE;

and integration leads to,

E=1-%-¢E,” +G-¢cE, eE; + N(T)

1.
2

The function of integration, N(T), is related to the specific heat at constant volume, cy,
through,

dN(T)
YVETAT

so that,

q=0BA+2-n)a-T-¢E, +c, T
: : T
§=0BL+2-pn)a¢E, +cy T

The external heat flow rate, a, is the difference between the total heat flow rate, q, and

. ;i - €E;;
the internal heat flow rate, — , so that,
p




eV,

Oij "CVjj

q=q+ =g+ heVy” + 28V, -V,

94
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APPENDIX, CLASSICAL THERMODYNAMICS
FIRST LAW
Define a system as a fixed mass enclosed in a single surface boundary

THE SYSTEM

AE = change in internal energy of system
W = work done by system
q = heat flow into system

The first law of Thermodynamics is a statement of conservation of energy for a system
undergoing a thermodynamic change.

AE = q-W

In classical thermodynamics the development is simplified by assuming the state of the
system is dependent on only three variables that are related through an equation of state.

Variables and equation of state:

f(P,V,T)=0

where,

P = pressure

\Y = volume

T = temperature, the exact scale to be used is defined later

Define the specific heat at constant V for the system as,

0E

TV
Define the specific heat at constant P for the system as,

V=
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_a(E+P-V)

C
P oT

b

The internal energy may be considered as E(V, T) in view of the equation of state so that,

Differentiating again with respect to T yields,

9E, _9dE) o4V,  9E
oT'"  ov|t oT'" " oT!
so that,

OF FAY
C,-Cy =|P+2=| |- 22
P \Y% ( aV T) aT|P

Define the enthalpy, H, as,
H=E+P-V

The Joule-Thompson coefficient, u; 1, is defined as,

0T
Wyr = a_P H
Ideal Gas

Temporarily consider the thermodynamic system to be a fixed mass of an ideal gas.
First part of definition of an ideal gas.

Btu
(Ib - mol)-° F
An early experimental result by Joule is adopted as the other part of the definition of an
ideal gas.

P-V=R-T, R=1386

) . JE
Joule’s experiment - — | =
oV
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In this case,

0E JE 0E
A% 0T aT

Therefore E = E(T) and

Y C
Cy =CV(T)a Cp -Cy =P'a—T|p =R, C, =CP(T), y=é

T T

AE =fcv -dT AH =f2cp -dT
T, T,

P
For reversible isothermal process q=W =R T~ ln(%) =R-T- ln(P—l)
1 2

i dT dv
For reversible adiabatic process W=- f Cy -dT Cy T +R 7 =0
T

T
If, in addition, Cy is constant C,, -ln(?z) + R-ln(&) =0 P -V,'=P,-V,’
1 1



SECOND LAW

Return to considerations of the general case (not necessarily an ideal gas).

Carnot (reversible) engine
T2
q
W=gq,-q,
d
T1
e = efficiency = — = 279 __ 4
d; D) 92

Consider two identical Carnot engines running in opposite directions. Unless they have
same efficiency a perpetual motion can be built. Therefore,

7 q
e=f(T1,T2) _1=f(T19T2)
q,
For a general gas running to produce W > 0

2

——— —

L=

s

=

r\-)( -
o

<



Py, Vi to P,, V, is areversible isothermal expansion at temperature T,
P,, Vo to P3, V3 is areversible adiabatic expansion to temperature T

Ps;, V3 to P4, V4 is areversible isothermal compression at temperature T
P4, V4 to Py, V) isareversible adiabatic compression to temperature T,

Ts
ds
Ts
W;=dq;-q,
a, %
T, W=W,+W, W=q;-q,
=d:— 4 q
d, 1
T
W,=dq,-q, !
d,
T,
From left Carnot engines, From right Carnot engine,
e f(Tz’T3)
d;3
q
_1=f(T19T2) &=f(T1,T3)
2 CE]
q
—L = f(Tl T, ) f(TzaT3 )
ds
The two conitions are equivalent, therefore,
f(T,,T;) q
f(T), Ts) = (T, To) " f(T1, Ts) —  f(T},T, )= 238 =1L
f(Tz Ty ) b

F(T
Note that f(T), T,) is independent of T3 so that — 4 _ f (T1 , T, )= ( 1 )
9, G(Tz

g

LR | F() )

o(t,) " 6(r) o(r,) o(t,)-F(T.)

Now choose F(T) =T so that T is the thermodynamic temperature scale and,

99



4 f(T19T2)= L
q: T,

When the temperature is defined this way it is called Kelvin’s thermodynamic
temperature scale.

Before using the ideal gas law, it is necessary to check to see if the temperature in this

100

law is consistent with the above definition of temperature. Therefore, return to the ideal

gas law temporarily. Calculate W and q for each of the four parts of the Carnot cycle.

Isothermal expansion: W, =q, =R"T, -ln(%)

1
T.

Adiabatic expansion: W, = f Cy-dT q=0
TI

Isothermal compression: W;=-q,=R"T, -ln(%)
3

T2
Adiabatic compression: W, =- f Cy-dT q=0
T

W=W;+W,+W;+W, = R-Tz-ln & +R-T1-ln &
Vi \E

. . T, . vV, V
Using the thermodynamic temperature result, a4 T—l , yields — = —> so that,

q> 2 1 4

W=R-(T, -T, )ln(%) and then

1

.. T, -T
e = efficiency = E =2 1
q2 T,

This result for efficiency is the same as the earlier definition so the temperature in the

ideal gas law is on a thermodynamic temperature scale.

Returning now to the general case, a common definition for the Second Law of
Thermodynamics is that for any reversible engine.

dq _ .
e j? dS =0 where S is the entropy
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and for any engine that is not reversible,

fd—q<0 e.g.q—2—$<0

The above equation is known as the Inequality of Clausis.

Return again to the ideal gas to determine some expressions for entropy.

dg=dE+P-dV =Cy -dT+ X L .gqv
gs=94_¢ 4T g4V
T T %

If Cy is constant,
T
T Vi

If V is constant also,

T
S, -8, =Cy -1n(T—2)

1

If, instead, the change is isothermal,

S, -S,=R:In A/] =R-In il
1 P,
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EQUILIBRIUM CONSIDERATIONS

First, an isolated system is defined as having W = 0 and q = 0 as shown below.

DEFINE ISOLATED SYSTEM

W=0

UNIVERSE

irreversible path

ible path i -
reversiole patn 3 (isolated system)

(not necessarily)
Isolated system)}

S,

For this cycle, recalling the Inequality of Clausis,

S, S

2 dq 1 dq
f _| IRREVERSIBLE T f _|REVERSIBLE <0
S T S T

1 2

The first integral must vanish since ¢ = 0. The second integral equals S; — S,. Therefore,

Si—=S><0 or $-S;>0
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This shows that, whereas the energy of the universe is constant, the entropy of the
universe is approaching a maximum. An isolated system may also be defined as having
E and V constant.

Consider a spontaneous change in an isolated system. It must be accompanied by AS > 0.

Equilibrium is defined as the state where no spontaneous changes occur. From this two
equivalent equilibrium criteria are deduced. They are,

1 At constant E and V the entropy is maximized.
2 At constant S and V the internal energy is minimized.

Although these are valid, they have limited use. The second criterion is applied for
spring-mass systems in mechanics thus leading to the minimum energy theorem.

The above two equilibrium conditions are not too useful in chemistry. Now get two more
equilibrium related results that are widely used. Let,

A = work function or Helmholtz free energy=E—-T S

F = thermodynamic potential = free energy = Gibbs free energy=H—-T *S
F=A+P'V

For a constant T reversible change,

AA =AE -T-AS=-W,;,x

For a real system,

W < Wmax

For a constant P reversible change,

AF=AA +P AV

if this change is also a constant temperature change,

AF = =W ux + P-AV = = Wr

Most laboratory experiments (electricity excluded) in chemistry are performed under

conditions of constant T and P such that Wxgt = 0 so that AF = 0. Since AS >0 or AH <
0 cause AF < 0 another equilibrium condition is determined.
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The two new equilibrium conditions are,

1. At constant T and P: F at equilibrium is a minimum
2. At constant T and V: A at equilibrium is a maximum
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DETERMINATION OF PROPERTIES FROM EXPERIMENTAL RESULTS
dF=dE+P-dV+V-:dP-T-dS-S-dT

dE=T-dS-P-dV

so that,

dF=V-dP -S-dT

dF dF
—|r=V and —|, =-S
oP oT

2
For an isothermal change, @AF=F,—-F,= f V-dP so, given an equation of state, if F
1

is known at one pressure it can be found for any other pressure. For the case of an ideal

gas, AF = R-T-ln(P—z)

Pl
For a change at constant pressure

oF F-H
S=

—lp == [

oT T

if, in addition, the change is at constant temperature,

d AF AF - AH
—|p==AS=—"—
0T

this equation is called the Gibbs-Helmholtz equation and it may be converted to the form,

%)
: |p =AH
Jl —
g

Thus the slope of the plot of % versus % is equal to AH as shown below.



curve measured for constant P

AR
T

slope = AH

L
T

Other relations between the thermodynamic variables can be derived using the
Gibbs free energy function, F. Consider the identity,

9 (9F) _ 9 (dF
oPloT '™ oT| 9P

o oF dF
Since it has been shown that a_P| =V and a_T| p =—3S there results that,

dS LAY

—|r ==

oP T '*

so at constant temperature,

P, 9 P,
AS = — R I P= — . -dP
S }[ pral d }[ o Vg d
This integration can be performed if the equation of state is known. In the case of an

ideal gas we already have shown that AS=R - ln(ﬁ) =R- ln(II:—l)
1 2

At constant pressure,

T,
=d_q=d_H=M — AS = &-dT
T T T T

T,

ds
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At constant volume,

T,

_dq _dE_Cy-dT AS=fC—V-dT
T T

T T T

ds
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SUMMARY OF THERMODYNAMIC VARIABLES

H=E+P'V Enthalpy
A=E-T"'S Helmholtz free energy or work function
F=E+P"'V-T"S Gibbs free energy or thermodynamic potential
dE=T dS-P"dV
dH=T'dS+V " dP
dA=-S'dT-P"dV
dF=-S°dT+V " dP
95 24
ov'"aT!Y
8 _av
oP'" ot !"
dq aS
C.=—1] —1.22
’ dT|P aT'"
dq aS
Cy=—|y=T—
Vo' aT|V
dE aP
—I|; +P=T-—
v’ aT 'Y
oH A%
| -V==T--=
ap '’ aT '*
-9V v
0T o LaH T
Y. ap M C, oP T C,
1 oV

R
vV, oT'"
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