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An ellipse is defined in the usual way by,
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The area of the ellipse, A, is given by,



A =m-a-b 6

The area moment of inertia, I« , about the x-axis is given by,

When the middle surface of a thin-walled tube of wall thickness t has a cross section
that is elliptical, the area moment of inertia about the x-axis is approximated by,
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The perimeter, P, of the ellipse is given by,
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After some manipulations, Equation 9 becomes,
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P=4.a-j ﬂ.déjz4.a-1§(m) 11

where E(m) is the complete elliptical integral of the second kind. The function a - E(m) has
the physical interpretation of being the perimeter length in the first quadrant between the
points (a,0) and (0,b). This integral is tabulated in many places. Elementary geometric
considerations show that,

E0) = % (m = 0 for a circle)

E(l) =1 (m =1 for a line on the x-axis)



The figure below shows that E(m) is nearly a straight line for m in the range —0.2 <m
< 0.2 . Two very useful approximations to this function are given by,

E(m) = 1. + 0.4630151-(1. - m) + 0.1077812-(1. - m)~
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The absolute value of the error in the first expression is less than 4E-5 while the
corresponding error from the second expression is less than 2E-8.

In Numerical Recipes by William H. Press et al, E(m) is written in the form,

T
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E(m)=[1-k*-sin’0-d§  k’=m 14
0

and this book gives a computer code for a rather general function that includes E(m) as,
E(m)=cel(x/1-m,1.,1.,1-m) 15

see page 185.



ELLIPTIC INTEGRAL OF SECOND KIND, E(m)
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The following figure shows the elliptic integral for the range of arguments from 0
to 1.
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In the sketch above the point P(x,y) is shown as a point on the ellipse in the first
quadrant. The distance along the ellipse in the first quadrant from (a,0) to P(x,y) is denoted



a-E(6,m). The function, E(6,m), is called the Legendre elliptic integral of the second
kind and it is defined by any of the following expressions,
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E(6,m)=[v1-k? -sin’6 -d6 k?=m
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Numerical Recipes also has this function in the form of a computer code so that,

E(6.,m)=cl2(tan@,~/1-m,1.,1-m)
17

Clearly,
E(m)zﬁ(%,m) 18

Consider a circle of radius RO. The perimeter of this circle is 2 - © - RO. Now
consider an ellipse with semi-axes defined by,

a = RO + AR 19
b = RO- AR 20
Th lity of a tubular is defined b mox "R _ AR d is designated as OV. Th

¢ ovality of a tubular is defined by ="——"=7 = and is designated as OV. e
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expression for m, in terms of OV, becomes,

[1-0\/ ]2 4.0V

m=1 - = 21
1+ 0OV (l—l—OV)Z

and,

a=RO-(1+0V) 22
b=RO-(1-0V) 23

Recalling that E(m) is nearly linear with m in the neighborhood of m = 0, an approximation
for E(m) is,
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The area of the ellipse is given by,
A = area of the ellipse = m-RO? (1 - OV?) 25

while

1-0v Y
P = perimeter of the ellipse = 4-RO-(1+OV)-E|1-
1+0V
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The perimeter of the ellipse is greater than the perimeter of the circle of radius RO. The
“mean hoop strain”, €.p, associated changing from the circle to the ellipse is given by,

2
Epyy = 22RO _ 2 (1, 0v).E|1-[ 122V -1 28
2-7-RO T 1+0V

When the perimeter is not permitted to change length while changing from a circle to an
ellipse, the above strain must be removed. This may be accomplished by “shrinking” the

cross section uniformly. Each dimension is divided by (1 + enp). When the shrinking is done
the area, A, of the ellipse is,

A =T RO (1 =0V? /(1 + €hoep)’ 29

In many applications other characteristics of an ellipse are required. The following
derivation is to determine the curvature as a function of x in the first quadrant for the ellipse

defined by a=RO + AR and b = RO - AR so that,

X2

=(1-OV)-RO- _[1- 30
y = ) J (1+0V)? -RO?

and then,

__I—OV. X
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1-OV  RO?-(1+0V)’ RO?-[1-0OV?]

— ' - 32
oV [(1+OV)2-R02-X2]; [(1+OV)2-R02-XZ];

Denote k(x) as the curvature so that,

(x) = y" __1-0vV_ RO? -(1+0V)?
B 3 1+0V 3 33
)2 (1+0V)2 . RO? - x2 L-ov)® 52
(1+0V)?

The curve below is based on Equation 33,
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The following expressions for curvature at the semi-axes are sometimes useful,
1-OV 1
x(0) = 34

"1+0V RO-(1+OV)

1+ 0OV 1

x{(1+0V) - RO) =-1—50 RO-(1—-0OV]
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or,



K‘(x):— a-b .
(az ool () ] 3a
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If the “shrinkage” mentioned above is applied to the ellipse then the curvatures should be
multiplied by (1 + €hoop). The curves below show the changes of dimensionless curvature with
ovality, taking into account the shrinkage. These curves show that, for small ovality changes
from a circular section, the curvature changes can be approximated using,

RO - (curvature change) =+ 3-OV 36
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A useful formulation for finding the change in area from a circle to an ellipse of the
same perimeter with ovality OV is given below using the approximation,



E(OV) = complete elliptical integral of the second kind as a function of ovality
2
= E[l-(l'ov j }z”~[1-ov+5-ov2)
1+ 0V 2 4

The curves below indicate the quality of the match with the calculated values using

Numerical Recipes .
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Consider the circle of radius rO. Maintain the perimeter constant and distort the
circle to an ellipse of ovality OV. Denote the major and minor semi-axes as,

a=10+ Arl + Ar2
b=r0 + Arl - Ar2

The original ovality is zero and the final ovality is,

Ar2

OV=——7-—
1O + Arl

The original area is TrO? and the final area, AF, is,

2
AF=7t-r02~(1+Ar1j (1-ov?)
rO

38
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The original perimeter is 2'wrO and the final perimeter, PF, is,
Arl 5
PF=4.4 -E0OV) sz-ﬁ-ro-[l+5j~(l+OV)-(I—OV+Z-OV j 42

The condition that the perimeter is unchanged gives,

Arl 1 1

1+ =1-—-0V?
rO

n

(1-0V+jov2j~(1+ov)
43

Substituting Equation 42 into Equation 40 to eliminate Arl gives,
2 (1L ove ) . 2 (1.3 ove
AF=7:10 [ 1-- -0V (1-ov?)z7-r0*- 1-5-0vV 44

Therefore,

AF -7 - 102 (change of area)

n

=8 3 ov? 45
7102 (original area) 2

In the literature concerning “Plates and Shells”, the mathematical modeling for
ovalling of a cylinder is usually different from the elliptical shape considered above. The
common form for ovalling is that the radial displacement from the initially circular cross

section is proportional to cos 6. This formulation is presented below and then compared with
the results presented above for ellipses.

Consider a circle of radius rO with points A and B fixed on the perimeter. The points
separated by the differential polar angle d¢. Now distort the circle by specifying
displacements in the plane of the circle. The displacements are given as an outward radial
displacement, w,, and a tangential displacement, w.. Each of these displacements is a
function of ¢. Note that, at each fixed point, the radial and tangential directions are referred
to the initial, circular configuration. The initial distance, dsi, between points A and B is given
by,

dsi =rO - do 46

The distance, ds;, between the points after the circle is distorted may be related to ds; using
straightforward analysis (given at the end of this appendix) with the result that the hoop

strain, €noop, 1S given by,

2
wet+w' 1 [wr+wt'j +wt2+wr2 '2'Wt'Wr'+2‘Wr'Wt'+Wr'2+Wt'2

0 2 0 2.102

de 1
dSi

Shoop -

47
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where a prime signifies differentiation with respect to ¢. When the inextensional theory of
cylindrical shells is studied, the terms in €np that are linear in w, and w, are set to zero so
that,

W:=- W, 48

and then the hoop strain is given by,

(Wt+wt”)2

49
2.102

Shoop =

This strain results because the usual inextensional theory considers only the linear
displacement terms in the strain equations.

If w, is taken as,
w =c-sin(2-¢) 50
so that, from Equation 48,
wr=-2"c cos(2 " ¢) 51

and €ho0p 1S given by,

2
Ehoop = ——59+5in”(29) 52
2-10
w 2
Note that this strain includes the term — 3 in Equation 47. This term shows that when w,
21O

= 0 and w, is constant (this satisfies Equation 48), there is a non-trivial hoop strain. This
result is correct and follows from the definition of w, being in the tangential direction for the
circular configuration, see sketch below,

W

initial circular

configuration
rO
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[ A2 2
The hoop strain induced by this displacement is 10" +w,” -10 . For w; << rO, this hoop
rO

2
Wi

2-10?
from the strain of Equation 52 is,

strain is

and equals the strain in question in Equation 47. The perimeter change AP

=27 2
9--c
ap= | Ehoop 1O dg === 53
¢=0

If the perimeter is reduced by reducing the radius by Ar to offset the perimeter growth AP,
the result is,

2
AP 9-c 54

so that the area change, AAp, for this perimeter adjustment is approximated by,

2
AAp=2.-7-10 Ar=- 27" 55

The changes of areas, AA; and AA., associated with w; and w; , respectively are, to second
order terms in w; and wy,

¢p=2- '
AA, = ;'(r0+wr)2'(1+wt j‘d¢-7z:-r02=—2-7t'02 56
620 rO

2

=27 w’ 10-d¢ V4

AA, =2-7-10 1.

Consequently, when the perimeter is restricted to being inextensible through second order
terms in w, and wy, the net change in area, AArea, is approximated by,

2 2
AArca=AAp +AA, +AA, =- 2T 5. 7.2 ”; =-6-7-c? 59
or
2
AAre;‘:_@(C] 60
- 10 rO

Now, the “ovality” for the distorted configuration is given as “OV” where,
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(maximum diameter) - (minimum diameter) _2-c

"OV"= . . — , 61
(maximum diameter) + (minimum diameter) 1O
Combining Equations 60 and 61 yields,
AA 3
re; —_> '"OV"Z 60a
7 -10 2

This result agrees with Equation 45 for the case of an ellipse. Thus, the sinusoidal
formulation is, to second order terms in w; and w;, equivalent to the elliptical formulation. At
the practical level, the results show that classical collapse analysis of thin-walled cylindrical
shells may be simplified by using the sinusoidal formulation to find the changes in curvature
while using the elliptical formulation to find the change in area.

It is interesting to note that when Equation 50 is replaced by,

w, =c-sin(n-¢) 6la
then,
wr:-n-c-cos(n-(p) 62
Ehoop =L~(n2 —1)2 -sin®(n - ¢) 63
2-10?
2 4)? 2
AP=(n —1) -T-C 64
2-10O
2 42 2
Arz_(n'ﬁ 65
4-rO
2 4|2 2
AAP=_(n‘1)2'”‘C 66
1’12 2
AA, =-— T-¢ 67
2
AA, =+T .2 68
2
2 (.2
AArea=- (n _1)-71"02 69
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2 (.2 2
AAreaz_n -(n —1)' c 70
T 102 2 rO
OV = (maximum radius) - (minimum radius) _n-c

(maximum radius) + (minimum radius) rO

71
AAreezl _ n?Z -1 mONT2
7T - 1O 2
72

As a concluding observation the derivation of the hoop strain, €op, in terms of the

radial and tangential displacements, w{0) and w«(9), is presented. First consider the points A
and B defined on page 10 in the undeformed configuration. Using the conventional Cartesian
coordinate system, the x and y coordinates if the two points are given by,

x A =10 -cos¢
ya =1rO-sing
73

and

XA =10 - cos(¢ +dg)

y o =10 -sin(¢ + d¢) 74

The differential distance between points A and B in the undeformed configuration, ds;, is
obtained using the identities,

sin(a + b) =sina - cosb + cosa - sinb
cos(a+b)=cosa-cosb-sina-sinb

75

so that,

(dsi)2 =102 -(cos(¢+d¢) —cos¢)2 +107? -(sin(¢+d¢)) —sin¢)2

=107 o(cos2¢+(-sin¢)2)-d¢2 =107 'd¢2
76

In the deformed configuration the positions of material fixed points A and B are
changed to the positions A and B with the radial and tangential displacements, w, and
wi. These displacements and their derivatives with respect to ¢ are assumed to be very small
compared to rO. The new positions are now,
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xxz(r0+wr)-cos¢—wt -sin @

Yx =(rO+wr)-sin(z)+wt -cos¢@ 77
and,

xg =(rO+w, +w,"dg)-cos(p+dg)-(w +w, "d¢)-sin(¢+dg)

yg =(rO+w, +w,"dg)-sin(¢ +dg) +(w +w"dg) - cos(¢ +dg) 78
so that, through first order terms in d¢,

Xg X% :[(wr'-wt) -cos¢—(r0+wr +wt') -singb]‘dqﬁ

Y5 -YR :[(wr'—wt)-singi)-l—(r0+wr +wt')-cos¢]-d¢ [
and then,

(dsg)? =[x -x5 ) +lyg -y )? %

:[rO2 +2-10-(w, +wt')+wr’2 -2-w Wy +wt2 +wr2 +2-w, -wt'+Wt'Zl-(d¢)2

Recalling that the displacements and their derivatives are small compared to rO, the hoop
strain may be approximated as follows,

(dsy )?

0
r0% -(dg)?

€hoop =

81
2

2
:wr+wt'_l_ w,tw' +wr2+wr'2+2-wr ~wt'—2-wr’~wt+wt2+wt'
O 2 O 2.102

Equation 81 is the same as Equation 47
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AN ILLUSTRATIVE PROBLEM USING EQUATION 59 ABOVE:
BUCKLING OF ATHIN CIRCULAR RING, SUBJECTED TO A UNIFORM

RADIAL LOADING
R = mean radius of ring
w = radial component of displacement
EI = bending stiffness for ring
AP = radial load per unit length
M = bending moment
o = angular coordinate
U = strain energy
\Y = potential energy of load
PE = total potential energy

OPE = first variation of PE
82PE = second variation of PE

V=—AP-6-R-(%-W02):—%-n-AP-WOZ from Equation 59 above

PE=U+V= 9'_7[.E_£_3'_7‘.AP W,
2 R 2

Note there are no linear terms for wo in the above equation. This is expected when a
buckling load is being predicted. The equilibrium solution is obtained by setting OPE to zero
so that,

SPE = [9—“-%—3'7”-@]-% dw, =0
and,
Ap_ 3-EI
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The physical interpretation of the last equation is that for the assumed displacement and load
distribution the only equilibrium solution is given by this equation. The stability of this
solution may be found by evaluating §°PE and,

8°PE = ?)'Tn'(:;.EI—APj"mWo)Z

R3

The solution is stable whenever §>PE > 0. Consequently,

3-EI
Limit of stability = buckling load = AP = —
R

This solution agrees with the solution in Stephen P. Timoshenko and James M. Gere’s
Theory of Elastic Stability, Second Edition, 1961, Section 7.4. The advantage of using
Equation 59 for the area change is that the perimeter of the ring is unaltered through second
orders terms in wo and the extensional contribution to U can be ignored in the prediction of
the usual buckling pressure differential.
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