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THE LUBINSKI-WOODS PROBLEM USING FORCE EQUILIBRIUM RATHER THAN 
POTENTIAL ENERGY 

 
by Paul Paslay, P.E. #44278 

 
 Consider a helical elastica of pitch PIT and radius R.  Let the axis of the helix coincide with the 
z-axis of a Cartesian, right-handed, xyz coordinate system.  Let s measure length along the helix so that 
locations on the helix may be identified by s.  The vector  from the origin of the coordinate system to 
any point on the helix may be written as, 
 

 
 
where, 
 

 

 

 

 

 

 
The angles   may be called the helix angle and azimuth angle, respectively.  The unit length 
vector tangent to the helix is, 
 

 

 
The unit length radial vector is given by, 
 

 
 
A third unit length vector is now defined that is mutually perpendicular to  and forms a  
right handed system, 
 

 

 
Finally, the curvature vector of the helix, , is given by, 
 

 

 
so that, 
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The three base vectors defined above are used in the analysis below.  It is, therefore, helpful to 

invert this set to obtain, 
 

 

 
noting that, 
 

 

 

 
as well as the derivatives, 
 

 

 
 The external loading on the helix, w, is a uniform radial inward load per unit helix length.  In 
general, a force and moment will be required on the cross section of the elastica.  This force, , is 
resolved using the three mutually orthogonal base vectors defined above so that, 
 

 
 
where each component is independent of s.  In order to determine if this can be a solution, the force must 
be substituted into the force and moment equilibrium equations and they must be satisfied.  The force 
equilibrium equation is, 
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When the components are required to separately vanish, the result is, 
 

 

 
Note that the force equilibrium condition yields only two scalar equations.  These two conditions must 
be satisfied in order to satisfy force equilibrium.  The moment equilibrium condition is, 
 

 

 
where, 
 

 
 
and the moment components are independent of s.  The moment equilibrium condition leads to, 
 

 

 
 The elastic stress-strain equations for this problem are, 
 

 

 and  
 

 

 

where  is the elastic twist per unit length, EI is the bending stiffness and GIP is the torsional 

stiffness.  These equations reduce to, 
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To summarize, in order to satisfy equilibrium, the following equations must be satisfied, 
 

 

 

 

 

 

 
Using the above set, the fourth and second of the above equations can be written as, 
 

 

 
It is interesting to note that, for constant Fτ and Mτ, 
 

 

 

In the second-to-last equation the loads, w and Fτ, and changes of configuration, α and , appear.  A 

typical problem is that Fτ and   (or Mτ) are specified.  This specified loading is not adequate for the 

determination of a unique solution.   
 

The resolved force, FAXIAL, and moment, MAXIAL ,  along the helix axis at the same elevation are 
given by, 
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The resolved force, FLATERAL, and moment, MLATERAL, perpendicular to the helix axis at the same 
elevation are, 
 

   
 

 

 A convenient dimensionless form for these equations is given below, 
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FURTHER CONSIDERATIONS 
 
 If the condition, 
 

 

 

is adopted to resolve the value of . Then the following curve results.  This curve is essentially 

independent of the value of α up to 5 degrees 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 When this condition is introduced, Mτ set to zero and the solution restricted to values of α << 1, 
the solution becomes, 
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ADDENDUM 
 

 On page 3 above, the term, , is introduced as the elastic twist angle per unit length.  

When  
 

 

 

is used to eliminate , the expression becomes .  The derivation of this expression for the 

twist per unit length can be found in Love’s treatise*.  A physical description of the derivation is that two 
types of “rotation” are defined so that their difference gives the desired twist per unit length.  The first 
rotation, , relies, in the current problem, on bending the axis of an initially straight rod into a helix so 
that every line in the rod that was initially perpendicular to the cross section remains perpendicular to 
the cross section.  A second rotation, , is defined as the cumulative rotation of the actual cross section 
while moving along the deformed axis.  Clearly, if  there is no component of elastic moment 
directed along the deformed rod axis.  This explains why the measure of twist is based on the difference 
between these angles. 
 
 
 
* A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Fourth Edition, Dover 
Publications, New York, 1944, Sections 252 & 253 
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