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PRELIMINARY REMARKS 
 

These are lecture notes prepared for the Blade Energy Partners Film “Theoretical and Applied 
Plasticity”.  Several sources were used to compile the notes so the format varies from section to section. 
These notes are not self-contained so considerable explanatory material would be required to fill in 
much of what is presented below.  They should be regarded as a supplement to the film for persons 
wanting a bit more detail than the film provides.
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BLADE ENERGY PARTNERS 

 
THEORETICAL AND APPLIED PLASTICITY COURSE, MAY 9, 2011 

 
Paul R. Paslay, P. E. #44278, Manatee Inc., F-4992 

 
INTRODUCTION 
 
Principal Texts, 
 

1. William Prager and Philip G. Hodge, Jr., Theory of Perfectly Plastic Solids, Dover 
Publications, 1968 (originally published by John Wiley & Sons, Inc., 1951) 

2. Rodney Hill, The Mathematical Theory of Plasticity, Oxford at the Clarendon Press, 1950 
3. Ted L. Anderson, Fracture Mechanics, Third Edition, Taylor & Francis, 2005 
4. Philip G. Hodge, Jr., Plastic Analysis of Structures,  McGraw-Hill Book Company, 1959 

 
Plastic Instability of a Tension Bar 
 
The derivation presented here is taken from Hill, Reference 2.  This derivation considers a cylindrical 
bar subjected to tension parallel to its axis.  For ductile, metallic bars it is well known that, for a 
monotonically increasing tension load which started at the unloaded condition, the load reaches a 
maximum and then decreases before the bar is separated into two pieces.  The analysis given here relates 
the occurrence of the maximum load to a property of the true stress versus engineering strain curve for 
the material being tested. 
 
While the bar is being loaded let, 
 
σ  = current true stress = (axial load)/(current cross-sectional area) 
l  = current length of the bar 

  = original length of the unloaded bar 
 

 
          note that  
A  = current cross-sectional area 

  = original cross-sectional area of the unloaded bar 
L  = axial load (positive when tensile) 
 
The volume of the bar is .  Assume the elastic strains are negligible compared to the plastic strains 
when the maximum load is reached.  Further, make the usual assumption that plastic deformation does 
not alter the material volume.  Then 
 

             AI.1 
 
The condition that the axial load reaches a maximum value implies that 
 

                 AI.2 
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Combining Equations AI.1 and AI.2 to eliminate dA/A gives 
 

             AI.3 

 
or 
 

                AI.4 

 
This is the condition that is fulfilled when the maximum load is reached.  The construction shown in the 
sketch below indicates how Equation AI.4 can be solved graphically using a true stress (σ) versus 
engineering strain ( ) curve. 
 

                         
 
When the maximum load, , is found, the ultimate tensile strength  (an engineering stress) is 
given by, 
 

                AI.5 

 
An Elementary Structures Problem 

 
Small displacements, elastic-plastic bars 
3 identical bars, same yield stress σyp, same area, A, 
  same Young’s modulus, E 
T1 is tensile force in center bar 
T2 is tensile force in outer bars 
δ1 is the change of length of the center bar 
δ2 is the change of length of the outer bars 
All connections are pin connections 
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Let, 
 

   so that   

 
Start P from zero with T1 = T2 = 0 & δ1 = δ2 = 0 and increase P monotonically. 
 
For initial elastic region, 0 < δ1 < δ1* : 
 

  

 
For δ1 > δ1* but not enough to yield side bars: 
 

   

 
For δ1 >  
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For unloading from δ1** > , let δ = δ1** - δ1 
 
Initial unloading is elastic for  
 

  

 
For  
 

  

 
The figure below shows the cycle computed above graphically. 
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1 (0, 0) 
2 (1, 1.707) 
3 (2, 2.414) 
4 (δ1**, 2.414) 
5 (δ1**-2, -1) 
6 (δ1**-4, -2.414)  
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YIELD CONDITIONS FOR ISOTROPIC MATERIALS (IN CARTESIAN COORDINATES) 
 
σij = the usual spatial stress tensor, σij = σji , i = x, y, z 
 
If the material is isotropic then the function defining the yield condition in terms of the stresses must not 
change when the xyz coordinates are changed.  To find the admissible forms a little linear algebra 
follows using matrix notation, 
 
Coordinate change to [ ] from [x]:  , where [c]-1 = [c]T  
 
Stress changes from [ ] to [ ] where  
 
Recall that the determinant of the product of two square matrices is equal to the product of their 
determinants so that  and the determinant is independent of the coordinate system 

chosen. 
 
Now  is the determinant of a legitimate stress field where λ is to be determined.  In fact, 
when this determinant is set to zero, the three roots for λ are the principal stresses which are, of course, 
independent of the coordinate system chosen.  The cubic equation in λ resulting from the expansion of 
this determinant, DET, is, 
 
DET = 

 

 
Since the roots for λ are independent of the coordinate system chosen, the coefficients, called invariants 
of the stress tensor, must also be independent.  Three stress functions, IN1, IN2 and IN3 and, J2, a 
combination of IN1 and IN2 are given below, 
 

  

 
A very popular criterion for the onset of yielding, called the von Mises yield condition, is, 
 

 
 
where k is the yield point in shear.  The relationship between the yield point in shear and the yield point 
in tension, σyp, is easily found by taking σxx as the only nontrivial stress and substituting it into the last 
equation to obtain, 
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Comparison of the Beltrami and the Von Mises Yield Criteria 
 
 The von Mises criterion may be written, in a general Cartesian coordinate system, as, 
 

 
 
where σ is a normal stress and τ is a shear stress.  Consider the case of a long, closed cylinder with 
internal pressure of pi and no external pressure.  Superpose an axial load, P, on the closed cylinder.  The 
elastic stress state away from the ends of the cylinder and at the inner radius is, 
 

 

 
and the shear stresses vanish.  In this case the von Mises criterion becomes, 
 

 

 
so that. 
 

 = internal pressure to initiate yielding when P = 0  =  

 
  = axial load to initiate yielding when pi = 0  =  

 
and the criterion may be written as, 
 

 

 
 The same procedure will now be followed for the Beltrami yield criterion.  It may be written as, 
 

 
 
where ν is Poisson’s ratio.  Note that the von Mises and Beltrami criteria coincide when ν = 0.5.  When 
the stress state at the ID of the cylinder is substituted into this criterion, the result is, 
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 The figure below gives a comparison of the two criteria when ν = 0.3 and the diameter ratio is 
0.76333. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REFERENCE: 
 
A quote from History of Strength of Materials by Stephen P. Timoshenko: 
 
“Beltrami1 suggested that, in determining the critical values of combined stresses, the amount of strain 
energy stored per unit volume of the material should be adopted as the criterion of failure.  This theory 
does not agree with experiments, however, since a large amount of strain energy may be stored in a 
material under uniform hydrostatic pressure without the onset of fracture or yielding,” 
 
1 Rendiconti, p. 704, 1885; Math. Ann., p. 94, 1903. 
 
From Theory of Elasticity, Third Edition, by S. P. Timoshenko and J. N. Goodier: 
 
Define stress invariants I1, I2 and I3 as 
 
I1 = σx + σy + σz 
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I2 =  
 
I3 =  
 
then the strain energy per unit volume, V0, is given by, 
 

V0 =   
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SIMPLE PROBLEM, PRANDTL-REUSS MATERIAL, INCOMPRESSIBLE 
 
The formulation of the constitutive equations used in Prager & Hodges’ treatise is somewhat involved 
and not done very well from a Physics point of view in their book.  A different formulation is presented 
later.  Appendix 5 presents the equations used by Prager & Hodge.  The reader is asked to accept 
Appendix 5 so that problems can be worked as soon as possible.  Note that λ is a new unknown that 
must be determined using the yield condition.  The first problem is shown below, 

 
 
 

1. Apply σ first to , no plastic flow. 
2. Keep  and apply τ. 

 
 
 

 
For second loading: 
 
Rate of doing work =  
 

Parameter in Prandtl-Reuss equation =  

 

Prandtl-Reuss equation:  

 

Use  

 

To obtain  

 

Use yield criterion  

 
See figure below 
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SECOND SIMPLE PROBLEM, PRANDTL-REUSS MATERIAL, INCOMPRESSIBLE 
 
Similar to first but order of loading is reversed. 
 

1. Apply τ up to k with no plastic flow. 
2. Hold and apply σ. 

 

After first step: σ = 0, τ = k, ε = 0 and γ =  

 

For second step:  

 

Integrating:   

 

Use yield criterion  

 
Comparison of the solutions for the two simple problems, 
 

  First problem   

 

  Second problem  

 

Note that  as well as  switch roles in the two solutions.  More 

important, the solutions show that the results are load path dependent as first step can induce a plastic 
strain 
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A LESS SIMPLE PROBLEM SOLVED USING AN ANALOGY, TORSION 
 

 
Right cylinder with z axis intersecting the centroid of the cross section 
 
The cross section is simply connected (enclosed by single curve) 
 
Axial length of cylinder is much greater than the cross-section extent 
 
Neglect end effects 
 
An axial torque, T, is applied to the top of the cylinder 
 
An axial torque, -T, is applied to the bottom of the cylinder 
 
θ = angle of twist per unit length away from ends 
 
The lateral surfaces of the cylinder are stress-free 
 

. 
 
 
 
Assume the displacements in the elastic and plastic regions of each cross section are, 
 

 

 
so that, 
 

 

 
Now observe that, 
 

 
 
so that, 
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The only non-vanishing equilibrium equation is for the z direction and it becomes, 
 

 
 
The function, ψ, can be introduced to represent the two stresses, τx and τy, with a single function as,  
 

 
 
Note that, when the stresses are defined this way, the equilibrium equation above is automatically 
satisfied.  The boundary conditions on the lateral surface are,  
 

 

 
where α is the inclination of the outward unit length boundary normal vector to the x axis so that on the 
boundary progressing in a counter-clockwise direction, 
 

 
 
The shear stress at the boundary must be in the direction of the tangent to the boundary so, 
 

 

 
Consequently, ψ is constant on the simply connected boundary.  The constant is usually set to zero and 
that will be done here.  The net forces, Sx and Sy, and net torque, T, on the cross section are, 
 

 

 
The results given above are valid for both the elastic and the plastic regions of the cross section.  The 
elastic case is considered next.  Hooke’s law gives, 
 

 

 
When these results are substituted into , the result is, 
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This is the governing equation for the elastic problem.  To illustrate this, take the familiar case of a solid 
circular rod of radius a.  Let r be the radial coordinate so that, 
 

 

 
Therefore, 
 

 

 
and the limit for θ in the elastic region is when the resolved shear stress at r = a equals k giving, 
 

 

 
This solution is easily extended beyond the elastic region by setting a “roof” on the circular cross section 
whose radial slope is equal to k.  The ψ surface is limited to contact the cone but it cannot penetrate the 
cone.  In the limit the torque in the fully plastic state is proportional to the volume under the full cone so 
that, 
 

 

 
Then, 
 

 

 
P&H give the solution for torques between and  in terms of the angle of twist, θ, 
as,  
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The above covers the stress determinations.  P&H give several solutions to torsion problems. 
 
Now turn attention to the determination of w(x,y:θ), the warping function.  Suppose the stress solution 
described above has been found so that γx and γy may be regarded as known everywhere in the cross 
section.  The elastic and plastic regions are bounded by C. 
 
First consider the determination of w(x,y:θ) in the elastic region.  In this region, 
 

 

 
so that, 
 

 

 
When w is specified at one point, PO, in the elastic region, the value of w can be found anywhere in the 
elastic region by integrating the last equation.  The integration is path independent since displacement 
compatibility is satisfied.  Therefore, w can be found on the elastic-plastic boundary.  Note that in the 
elastic region, 
 

 

 
Consider a point, P, in the elastic region.  When the elastic-plastic boundary, Γ, reaches P, then the yield 

criterion is satisfied at P so that τ = resolved shear stress =  and it is directed parallel to a 
point on the boundary, C, curve.  This point is found as the point on C whose normal (to C) passes 
through P.  The stresses at point P do not change with further twisting. 
 
In the plastic region, 
 

 

 
but  so that, 
 

 and in the plastic region, 
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Now the values of w in the plastic region may be found by solving the equations below under the 
condition that , 
 

 

 
A clever way to accomplish this is indicated in the figure below. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
On RQ  so that, 
 

 

 

Combining these two equations to eliminate  yields, 

 

  or   
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P&H CHAPTER 4, PLANE STRAIN, AXIAL SYMMETRY 
 
The solution presented here differs from the standard Lame’ solutions found in all elasticity textbooks in 
two ways which are, 
 

1. The material is incompressible (both elastic and plastic strains, ). 
2. The elastic-plastic solution is found. 

 
Take symmetry into account so that in both the elastic and plastic regions, 
 
r = radial coordinate measured from center of hollow cylinder. 
u = outward radial displacement, the only non-trivial displacement, a function of r only 
 

  

 
Note that εr:εθ:εz = er:eθ:ez = 1:-1:0.  The incompressibility condition yields, 
 

 

 
and 
 

 

 
In the elastic region, 
 

 

 
Denote the mean stress by s so that, 
 

 

 
The radial and tangential force equilibrium conditions must be satisfied and they are, 
 

 

 
In this case the equations are satisfied so long as s is a constant.  This is consistent with the notion that a 
hydrostatic pressure will not alter the displacement solution for an isotropic, incompressible material.  In 
order to determine the elastic-plastic boundary the yield condition is required.  It is, 
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Since k decreases with r, it is clear that the plastic region (if there is one) lies between the inner radius, a, 
of the cylinder and the elastic-plastic boundary at r = ρ.  The elastic region is between r = b and the outer 
radius, b, of the cylinder.  The last equation is satisfied at r = ρ so that, 
 

 

 
and the condition that σr = 0 at r = b then gives, 
 

 

 
The solution in the elastic region (ρ < r < b) is, 
 

 

 
For the plastic region, recall that er:eθ:ez = 1:-1:0 and, since all strains start at zero in the unloaded state, 

 so from the inner radius, a, to r = ρ, 
 

 
 
This implies that, 
 

 
 
and then in the plastic region, 
 

 
 
Now consider the radial force equilibrium equation, 
 

 

 
Continuity for σr at r = ρ (the elastic-plastic boundary) gives, 
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The internal pressure, p, applied at r = a, is equal to  so that, 
 

 

 
Now, 
 

 

 
P&H has a careful coverage for this problem.  This includes, 
 

1 Comparison of this solution with Nadai’s compressible material solution 

2 Unloading from p* < p < p**.  If  the unloading will always be elastic. 

3 The residual stress state can be used to determine the shake-down condition as, 

  p < p**  for  

  p <  for  

4 The case of unrestricted plastic flow is examined using plane strain and Mises theory (elastic 
strains neglected).  The solution shows that for p > p** the pressure decreases.  Therefore, in 
the classical sense, the solution is unstable. 

5 The strains can be large enough to become “finite” strains.  Section 18 of P&H gives a very 
good discussion on this point.  The conclusion is “finite” strains need not be considered when 
using Mises theory but Prandtl-Reuss theory requires they be taken into account if the strains 
become sufficiently large. 
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P&H CHAPTER 5, PLANE STRAIN, GENERAL THEORY 
 
Shear Lines in Plane Strain 
 
For this chapter only Mises theory (neglect elastic strains) is used and there are no body forces. 
 
Nothing varies in the z direction, w = 0, u = u(x,y) and v = v(x,y) so that the only non-vanishing strains 
are, 
 

 
 
The non-trivial Mises theory constitutive equations are, 
 

 

 
Let σ be the mean stress so the condition  gives, 
 

 

 
The von Mises yield condition for these circumstances is, 
 

 
 
This form suggests the Mohr’s circle construction shown in the formula sheet, Appendix 4.  With the 
definitions, 
 

 

 
The variables σx, σy and τ and the yield condition are reduced to two variables,  and θ, so that, 
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 is a dimensionless mean stress while θ is an angle in the physical plane.  The x face is a surface with 

a constant value of x on that face.  The angle θ is the angle the x face must be rotated in a counter 
clockwise direction to reach the face on which the maximum shear stress acts.  The formula sheet 
contains a sketch showing the various faces and the stresses acting upon them. 
 
The stresses plotted for Mohr’s circle are Nα and Tα given in the formula sheet.  After a few 
trigonometric manipulations these expressions become, 
 

 

 
It is easily verified that the Mohr circle construction shown on the formula sheet is consistent with the 
above equations.  The radius of Mohr’s circle in the plastic region is computed as, 
 

Radius =   

 
When the stresses in terms of  and θ are substituted into the force equilibrium equations, the result is, 
 

 

 
Consider a differential length line segment in the x-y plane.  The changes along the line (along s) of  
and θ are given by, 
 

 
 
The last four equations can be written in matrix form as, 
 

 

 

Now investigate to find the two slopes of the line, , that cause the determinant of the coefficient 

matrix to vanish.  If the slopes are real and distinct the equations are called hyperbolic equations.  It is 
shown below that this is the case.  First, set the determinant of the coefficient matrix to zero. 
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The roots are found as, 
 

 

 
As the roots are real and distinct for real values of θ, the equations are hyperbolic equations.  Let, 
 

First shear direction,    

Second shear direction,  

 
N.B. – The slopes are perpendicular and the first shear direction is obtained by rotating the direction for 
the maximum principal stress by 45o counter clockwise. 
 
When a line in the x-y plane has one of the above slopes, the augmented matrix of the above matrix 
must have a rank of no more than two in order to avoid a contradiction.  This is ensured for the first 
shear direction by setting the following determinant to zero. 
 

 

 
Expansion of this determinant yields, 
 

 

 
Therefore, along a line whose tangent is parallel to the first shear direction.  Such a 
line is called a first shear line. 
 

For the second shear direction,  must be replaced by  in the above 

determinant.  Expansion of the determinant yields along a line whose tangent is 
parallel to the second shear direction.  Such a line is called a second shear line. 
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The figure below shows the relationships between the slopes of the shear lines and θ.  A family of shear 
lines refers to either a set of first shear lines or a set of second shear lines. 
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For the sketch above, the shear lines AB and CD are first shear lines while AC and BD are intersecting 
second shear lines.  The conditions along shear lines derived above require that, 
 

  

 
Define, 
 

 

 
The fact that these two angles are equal is called Hencky’s theorem: “The angle formed by the tangents 
of two fixed shear lines of one family at their points of intersection with a shear line of the second 
family does not depend on the choice of the intersecting shear line of the second family.”  A corollary to 
this theorem is that if a family of shear lines contains a straight line, it consists entirely of straight lines. 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
A second theorem, based on the above sketch is self evident and is called Prandtl’s Theorem: “As we 
proceed along a fixed shear line of one family, the centers of curvature of the of the shear lines of the 
other family form an involute of the fixed shear line.” 
 
It is clear from the above figure that if ABCD and A’B’C’D’ are first shear lines, point T is a point on 
the envelope of the first shear lines and the second shear line through T has a cusp there.  The envelope 
of the shear lines of one family is the locus of the cusps of the shear lines of the second family.  This 
means the envelope of the shear lines of one family is a limiting line across which the shear lines of the 
other family cannot be continued 
 
Boundary Conditions in Plane Strain 
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A figure from P&H, in the formula sheet, shows the sign convention used everywhere except for the 
Mohr’s circle construction.  For this sign convention the stresses at a boundary point in the plastic region 
whose normal is inclined by the angle α, measured counter clockwise from the x axis, may be expressed 
in terms of  and θ as follows, 
 

 

 
where N’ is the interior normal stress at the boundary.  When, as is usual, only T and N are specified on 
the boundary, the values of  and θ are obtained as, 
 

  

 
This solution has two roots shown in the figure on the formula sheet.  The value of N’ is governed by the 
choice of sign in the equation for θ above 
 
One must assume one of the solutions and proceed to solve the problem at hand.  It is usually possible to 
“guess” the correct solution.  In the long run, an incorrect choice will appear based on other boundary 
conditions not being satisfied and the correct choice can ultimately be found. 
 
The following section discusses methods for solving for the stresses in the plastic region.  In the section 
it is assumed that the proper choice for  and θ  on the boundary has been made. 
 
Approximating Schemes for Determining Shear Lines in Plane Strain 
 
An interesting property of hyperbolic equations is that specification of proper boundary conditions on 
part of the boundary determines the solution in part of the region.  This region is called the domain of 
influence for that part of the boundary.  This is very different from elasticity.  The difference is because 
the elasticity equations are elliptic equations (no real lines for characteristics).  There are three classical 
formulations for finding, in principle, the domain of influence.  Each formulation has a different type of 
boundary condition. 
 
First Boundary Condition Problem, the Cauchy Problem 
 

 and θ are specified along a line whose slope is nowhere equal to θ or θ + .  The sketch below shows 
a case of this boundary value problem. 
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Arc c is the boundary and the light full lines and the dotted lines indicate first and second shear lines, 
respectively.  The values of   and θ are specified at points (1,1) … (6,6).  The objective is to find the 
shape of the domain of influence with corners at (1,1), (6,6) and (1,6) as well as the values of  and θ in 
the interior at all the indicated points.  Consider point (1,2), the conditions along the first and second 
shear lines through this point yield, 
 

 

 
These equations may be solved to give, 
 

 

 
All the terms on the right-hand side of the two equations above are known so  and θ(1,2) are 
determined.  The physical location of (1,2) can be approximated by the intersection of the first shear line 
through (1,1) and the second shear line through (2,2).  The same procedure can be followed for points 
(2,3), (3,4), (4,5) and (5,6).  With the values of  and θ known and the location of the points 
approximated. The same procedure can be repeated for points (1,3), (2,4), (3,5) and (4,6).  Eventually 
point (1,6) is reached and the problem is solved.  P&H present a refinement for the point location 
calculation but these days no one works these problems graphically. 
 
Second Boundary Condition Problem, the Riemann Problem 
 

 and θ are specified along a line that is a first shear line. . In addition, an intersecting second shear line 
is defined along which θ is known.  The sketch below illustrates this boundary condition problem.   
and θ  are known for points (1,1) … (1,4) and θ is known for points (2,1) and (3,1).  The domain of 
influence is bounded by points (1,1), (1,4), (3,4) and (3,1). 
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Consider point (2,2)and apply Hencky’s theorem to find, 
 

 
 
so that, 
 

 
 
Since all terms on the right-hand side are known θ(2,2) is determined.  The location of point (2,2) is 
approximated from the intersection of the first shear line direction through (2,1) and the second shear 
line direction through (1,2)  The value of  is found from the condition that  is constant on the 
second shear line through point (1,2).  This procedure can be continued through the entire domain of 
influence. 
 
Third Boundary Condition Problem, the Mixed Problem 
 
Specify a first shear, c-c in the figure below, and another line γ−γ, not along a shear line, along which 

 is specified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If, for example,  is specified on γ−γ, then, 
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and then, 
 

 
 
This sort of scheme can be used to extend the solution through the domain of influence. 
 
Velocity Fields in Plane Strain 
 
On the shear lines there is no axial strain rate.  The figure below shows two points, A and B, along a first 
shear line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The condition that the extension rate vanish along this first shear line is, 
 

 
 
and for a second shear line, 
 

 
 

1. The velocity along a shear line is constant if, 
  A, It is straight,  along line. 
  B. It is a streamline,  
2.       P&H give a geometric scheme for finding velocities that is obvious. 
3.         A rigid-plastic boundary must be a shear line or a limiting line. 
4.       On a rigid-plastic boundary vn must be continuous, therefore = 0.  If vt is continuous then the 
             resolved velocity is zero.  Therefore, vt is usually discontinuous across a rigid-plastic  
             boundary 
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Families of Straight Shear Lines in Plane Strain 
 
An apparently trivial case is for the first and second shear lines to form a rectangular grid aligned 
with the x and y axes.  In this case the velocity field is, 
 
vx = f(y) ,    vy = g(x)          where both f(y) and g(x) are arbitrary 
 
When only one shear line family is straight, the shear line pattern is called a fan.  The simplest case 
is the centered fan shown below.  The straight shear lines are taken to be first shear lines so that the 
second shear lines are concentric circles centered at point O. 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
On each of the first shear lines θ is constant and, since  is also constant,  is constant. 
 
For the second shear lines,  = constant = c in the entire fan. 
 

 is independent of r as are σx, σy, τ.   
 
The stresses in this centered fan are, 
 

 
 
For the velocity components v1 = vr and v2 = vθ.  The inextensibility conditions require that, 
 
vr = -h’(θ) ,    vq = h(θ) + g(r) 
 
If there is a plastic region at point O and the velocity at point O is vO directed as indicated in the 
above figure, the functions h(θ) and g(r) are determined as, 
 

 
 
and then, 
 

 
 
A case of a non-centered fan is shown in the figure below. 
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The first shear lines are all tangent to a base curve while the second shear lines are involutes of the 
base curve.  Like the centered fan,  = c in this fan.  The “origin”, point O, is chosen where θ is 
equal to zero and the coordinate r to point Q is measured from the involute going through O.  With 
this coordinate system the solution for the stresses is the same as for the centered fan and the 
velocities are given by, 
 
vr = -h’(θ) ,    vq = h(θ) + g(r) 
 
Before giving an example of a straight limiting line, some characteristics of limiting lines are 
reviewed here.  The envelope of one family of shear lines is the locus of the cusps of the shear lines 
of the other family.  Consider a limiting line with normal stress N, shear stress T and interior normal 
stress N’.  P&H discuss the nature of the derivatives of the stresses and velocity with the result that, 
 

    

 
The problem described in the figure below is due to Prandtl and contains a straight limiting line. 
 
 
 
    
 
 
 
 
The solution given by Prandtl is not valid near x = 0 or at the ends x = l so it is best to think of the 
case where l >> h.  In the “valid” regions, 
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The shear line pattern in this region is shown below. 
 
 
 
 
 
    
 
 
 
 
 
The shear lines are cycloids. 
 
Lines of Discontinuity in Plane Strain 
 
Bending of a beam composed of a Mises material will develop a stress discontinuity that is familiar 
to mechanical and structural engineers.  In this case it is clear that the discontinuity is the remains of 
an elastic region and should be regarded as an elastic, inextensible filament.  P&H show that this is 
true for all stress discontinuities in plane strain. 
 
A formal approach to this plane strain problem can be based on the figure below where the different 
sides of the discontinuity are numbered 1 and 2. 
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The conditions that the stresses normal (N) and tangential (T) to the stress discontinuity are 
continuous lead to (see formula sheet, Appendix 4), 
 

 

 
Prager has determined that the roots of interest here are given by, 
 

 

 
These conditions are called the Prager jump conditions.  Note that  so that the  
line of discontinuity bisects the corresponding shear lines on each side of the discontinuity. 
 
The sketch below is for a problem where a stress field may be found using a stress discontinuity. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
The wedge is loaded by the uniform pressure, p, on the right flank.  Referring to the formula sheet, 
 

 

 
yields, 
 

   

 
Although it is possible to proceed on a mathematical basis, like P&H, it is pretty clear that on the left 
flank the interior normal stress is compressive.  The maximum normal stress on the left flank is zero so 
the value of θ is  and the upper sign must be taken for the above equation for OB.  Since the 
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discontinuity, OC, must bisect the first shear lines, the lower sign must be chosen for the above equation 
for OA.  Consequently, 
 

 

 
and the first jump condition then gives, 
 

 
 
For the velocity field, recall that OC must be treated as an inextensible filament.  It also makes sense to 
set vy = 0 on this filament.  It turns out that vx may be an arbitrary continuous function.  It is clear that 
the velocity at any point P at the intersection of the shear lines from R and Q can be found from the 
inextensibility of the shear lines. 
 
P&H go deeper into the discontinuity study but it won’t be pursued here except to mention an obvious 
requirement of the solutions with stress discontinuities.  The work done on the body by the presence of a 
discontinuity must be positive. 
 
One solution with stress discontinuities is shown below because it will be compared with another 
solution later. 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
The top pressure, p, for incipient plastic flow is given in P&H as, 
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P&H CHAPTER 6, PLANE STRAIN, SPECIFIC PROBLEMS 
 
Punch Problem 
 
 
 
 
 
    
 
 
 
 
 
Find θ by rotating the σmax  face  by  
 
In DFA: 
 

    

 
AG must be a first shear line and  
 

 
 
Using the condition that  is constant on a second shear line, 
 

 
 
In AGC: 
 

   

 
And the uniform pressure on AB is  
 
Two alternative shear line solutions are shown below.  The computed punch force is the same as for the 
above set of shear lines. 
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The sketch below is for a variation on the punch problem.  A uniform pressure, p, is applied on AB. 
 
 
 
 
 
 
    
 
 
Obviously, the solution for the pressure is obtained from the punch problem by replacing  by γ so that, 
 

 
 
Lateral loading on part of the flank of an obtuse wedge is shown in the sketch below. 
 
 
 
 
 
    
 
 
The pressure for incipient plastic flow is found by replacing γ in the preceding solution by  to 
obtain, 
 

 
 
Earlier a solution for this problem was presented in connection with studying stress discontinuities.  
P&H give the figure below, their Figure 62, comparing the two solutions. 
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An extremely important conclusion can be drawn from this comparison.  The point is made by the 
following quote from P&H. 
 
“As is seen from Fig. 62, the pressure value corresponding to the discontinuous stress field for the 
obtuse wedge is smaller than that corresponding to the continuous solution.  As the pressure is gradually 
increased, starting from zero, one might therefore expect that plastic flow sets in under the smaller 
pressure corresponding to the discontinuous stress pattern before the pressure has reached the higher 
value required by the continuous stress pattern.  This is not the case, however, because there is no field 
of plastic flow associated with the discontinuous stress field.” 
 
 
 
 
 
 
 
 
 
A frictionless extrusion problem for reducing the thickness of a slab by 50% in steady flow is shown 
below.  Many forming and machining operations may be analyzed as steady flow problems. 
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The extrusion pressure, p, is then given by, 
 

        
 
and P&H give a corresponding velocity field.                 
 
A frictionless wedge indentation problem is shown in the figure below. 
 
 
 
 
 
    
 
 
 
 
For this problem, as the wedge indents the surface, the configuration is simply magnified.  P&H call this 
kind of problem pseudo-steady plastic flow.  
 
AE = AB = a 
 

 

 
The incompressibility condition is, 
 

 
 
This may be reduced to, 
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This equation was solved numerically and the resulting plot is given below, 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
P&H give the velocity field for this problem. 
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P&H CHAPTER 7, PLANE STRAIN: PRINCIPLE OF VIRTUAL WORK  
 
Limit analysis is a mathematical method used to find upper and lower bounds on the limiting, plastic 
load state. 
 
Proportional loading is assumed.  That is, all loads are proportional to a single monotonically increasing 
parameter. 
 
The Principle of Virtual Work plays a large role in the limit analysis theorems.  It is described below and 
subsequently proved. 
 
Principle of Virtual Work: 
 

1. Assume σij and vi are continuously differentiable with respect to x and y. 
2. No body forces. 
3. σij satisfies equilibrium conditions, σij,j = 0. 
4. The velocities are used to determine the strain rates 
   
5. Boundary loads equilibrate with stresses at boundary 

   

 
 
 
    
 
 
 
 
 
 
Then, 
 

 

 
or the rate of work absorbed by the body equals the rate of external work done on the body. 
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Proof of theorem: 
 

 

 
The theorem is also valid for rates of the stresses so long as the equilibrium equations are satisfied in 
time.  That is, 
 

 

 
Influence of discontinuities on Principle of Virtual Work: 
 
   Stress discontinuities: 
 Across a discontinuity the normal and shear stress components are continuous so, if v is 
 continuous, there is no contribution to the Principle of Virtual Work. 
 
   Velocity discontinuities: 
 
 
 
 
    
 
 
 
 
 
nhk is directed from sub region Rh into sub region Rk.  thk is obtained from nhk with a 90o counter 
clockwise rotation.   nhk and thk are unit length vectors and, 
 

 

 
The contribution to the work is  
 
Principle of Virtual Work with stress and velocity discontinuities: 
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and 
 

 

 
Plane Strain, Limit Analysis Using Prandtl-Reuss, Theorems of Greenberg, Drucker and Prager 
 
First boundary condition (BC#1): Arc along which surface tractions are specified 
 
Second boundary condition (BC#2) Arc along which displacement vector must vanish 
 
To have a nontrivial problem part or all of boundary must be BC#1. 
 
Proportional loading 
 
Contained flow: linearized strains and displacements are acceptable 
 
Looking for the load that causes impending plastic flow.  At impending plastic flow, plastic strain 
increases under constant surface tractions for the first time. 
 

 

 
where the reference surface traction is less than surface traction at impending plastic flow (S > 1). 
 
Define a statically admissible stress field as one which, 

1. Satisfies the force equilibrium equations 
2. Satisfies BC#1 
3. Satisfies the yield inequality, , everywhere 

 
Obviously, the actual impending plastic flow solution satisfies the statically admissible stress field 
conditions.  Let highest multiplier of the reference surface traction that is statically admissible be ms. 
 
First limit analysis theorem: 
 
ms  S 
 
Define a kinematically admissible velocity field as one which, 
 

1. The incompressibility condition, vi,I = 0 
2. Satisfies BC#2 
3.  
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Obviously, the actual impending plastic flow solution satisfies the kinematically admissible velocity 
conditions.  For this kinematically admissible velocity field compute, 
 

 

 
Second limit analysis theorem: 
 
S  mk  
 
so that, 
 

 
 
An illustrative problem applying the above two theorems is shown below 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the shear line field having four stress discontinuities,  
 

 

 
From the shear pattern on the right side of the above figure, 
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so that, 
 

 

 
The above two limit theorems are proved below.  This is accomplished in two steps.  The first step 
proves three auxiliary theorems and the second step uses these theorems to prove the limit analysis 
theorems. 
 
First auxiliary theorem: 
 
During incipient plastic flow  in the whole body. 
 
Second auxiliary theorem: 
 
Let  be a statically admissible stress field while  are the actual 
stresses and plastic strain rates at incipient flow.  Then, 
 

 
 
Third auxiliary theorem: 
 
Let  denote the strain rates from a kinematically admissible velocity field vx

*, vy
* and σx, σy, 

τ the actual stresses.  Then, 
 

 
 
Proof of first auxiliary theorem:  
 
Assume stress rates don’t vanish while  vanish and find a contradiction. 
 
In this proof let the velocities, strain rates and stresses be the actual values at incipient plastic flow. 
 
Apply virtual work theorem, 
                0    0 

 

 
so, 
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This integral must vanish in order to satisfy the virtual work condition.  This requires that, 
 

 
 
When  vanish, the force equilibrium equations yield  equal to zero.  

Consequently,  and the requirement that BC#1 requires  on 
part or all of the boundary leads to a contradiction unless, 
 

 in the entire body at incipient plastic flow 
 
Proof of second auxiliary theorem:  
 

 
 
Obviously, I = 0 in the actual elastic region, otherwise  
 

 
 

 

 

 

 
Use the Schwarz’ Inequality, see formula sheet (Appendix 4), with, 
 

 
 
to obtain, 
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then 
 

 

 
Proof of third auxiliary theorem:  
 

 
 
Use Schwarz’ Inequality with, 
 

 
 
to obtain, 
 

 

 
so that, 
 

 
 
Proof of first limit theorem (for ms): 
 
From the second auxiliary theorem, 
 

 

 
Since, at incipient plastic flow,  (from first auxiliary theorem), Hooke’s law shows 
that .  Therefore, in the above integral the plastic strains can be replaced by the total 
strains.  Then the virtual work theorem applies.  Note the actual stresses are in equilibrium with 

 on BC#1.  Also  are in equilibrium with .  Therefore, 
 

 

 
 since the actual stresses do work on the body. 
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In addition  and  so that, 

 
 

 
since .  Therefore, 
 

 

 
This theorem is implemented by finding a stress field that is statically admissible, then the loads for this 
stress field are less than the actual load. 
 
Proof of second limit theorem (for mk): 
 
From the third auxiliary theorem, 
 

 

 
Use the virtual work integral and the fact that the actual stresses are in equilibrium with  
on BC#1. 
 

 

 
As the first integral is greater than zero, 
 

 

 
and the absolute value of  the bound on S may be written as. 
 

 

 
P&H show that mk = S when vx

* and vy
* are the actual velocities.      
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This theorem is implemented by finding a kinematically admissible velocity field and making the 
integrations necessary to determine mk.  The loads  are greater than the actual loads at 
incipient plastic flow, . 
 
As an illustration of the limit theorems a relatively interesting example follows. 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
The solution presented earlier for the elastic-plastic version of the Lame’ solution gave the incipient 
plastic flow pressure, p**, as, 
 

 

 
Both a kinematically admissible and a statically admissible field are found using this solution.  Also the 
stress field can be extended into the rigid part of the motion.  And it turns out that, 
 
ms = S = mk  
 
so the exact solution is p**.  This kind of scheme can be used to check solutions obtained by other 
methods. 
 
Another illustrative solution that will be discussed is shown below. 
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The upper bound on T is improved using this kinematically admissible velocity field. 
 
A simple example using beam theory is presented below 
 
 
 
 
 
 
 
 
 
 
 
 
 
Statically admissible: 
 

 

 
Kinematically admissible 
 
 
 
 
 
 
 
 
 
Take reference value of P as one, then mk will equal the kinematically admissible incipient plastic flow 
load. 
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The above problem was simple but contemplate two problems from P&H, Chapter 7, Problem 9 shown 
below. 
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P&H CHAPTER 8, EXTREMUM PRINCIPLES  
 
No body forces 
Elastic and plastic incompressibility 
Assume continuity and continuous first derivatives of stress and velocity 
Cartesian tensor formulation 
A repeated Latin index in a term implies summation on that index 
,x denotes partial differentiation with respect to x 
 
The above leads to the following forms for some of the important equations 

 

 
Extremum Principles of the Prandtl-Reuss Theory (see Section 38 of P&H) 
 
Definition for statically admissible stress rate field, , 

1.        

2.        
3.       BC#1 on ST 

 
Definition of a kinematically admissible strain rate field, , 

1. Derived from a velocity field, vi
*, that is incompressible 
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2. BC#2 

 
Theorem 1.  Among all statically admissible stress rate fields the actual one minimizes the expression, 
 

 

 
Theorem 2.  Among all kinematically admissible strain rate fields the actual one minimizes the 
expression, 
 

 

 
Three Dimensional Limit Analysis (No discontinuities): 
 
Statically admissible stress field, , 

      1.        
      2.       BC#1 
      3.        
 
Find ms as largest value to satisfy the three conditions 
 
Kinematically admissible field, vi

*,  
 

1. Incompressible 
2. BC#2, vi = 0 on SV  
3.  

 
Find mk using, 
 

 

 
Then       
 
Three Dimensional Application of Limit Analysis 
 
The only application I am familiar with is for a Bingham fluid.  Don Wood showed that the plasticity 
limit theorems apply to a Bingham fluid and he applied the theorems to the initiation of movement of a 
dense sphere (radius = R) suspended in a less dense Bingham fluid.  The objective was to find bounds 
on the sphere density that initiates settling (cuttings in a drilling mud during cessation of drilling). 
 
1965 PhD Thesis, Rice University, 
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Donald Bayne Wood, “Incipient Motion of a Spherical Body Suspended in a Bingham Material,” 
Mechanical Engineering Department, May 1965 
 
The critical parameter, C, is 
 

 

 
Wood’s result   
 
A. N. Beris, J. A. Tsamopoulos, R. C. Armstrong and R. A. Brown, “Creeping Motion of a sphere 
Through a Bingham Plastic,” J. Fluid Mechanics (1985), vol. 158, pp 219-244 
 
Their result, obtained numerically, is C = 10.49 which is pretty close to Wood’s kinematically 
admissible solution. 
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STARTING HILL’S TREATISE 
 
Yield Surfaces 
 
If the material is isotropic the yield surface must be expressible as a function of the invariants, 
 
f(J1, J2, J3) =0 
 
The invariants, in terms of the principle stresses. are, 
 

 

 
Percy Bridgman, 1944, showed experimentally that a material’s yield stress is, approximately, 
independent of hydrostatic pressure.  Therefore, many formulations in plasticity theory are in terms of 

 where, 
 

 
 
Then the yield surface is usually expressed as follows, 
 
f(J’2, J’3) = 0 
 

 

 
The Bauschinger effect is that if a material undergoes plastic flow for a particular load a subsequent 
reversed loading will induce yielding before the load magnitude is fully reversed to the yield value for 
the first yielding.  Recalling the first structure that was analyzed in the series, it is not surprising that 
most materials exhibit a Bauschinger effect.  This effect is neglected for the moment so that f(J’2, J’3) 
must be an even function of J’3. 
 
It is instructive to visualize the yield surface in principle stress space.  Consider the sketch below, 
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The dashed line makes equal angles with the Cartesian principle stress axes.  Since the sum of the 

squares of the direction cosines is equal to one, these direction cosines are equal to  and the angle is 

54.74o.  Plane Π is perpendicular to the dashed line and includes the origin.  Therefore the angle 
between the Π plane and the principle stress axes is 90 – 54.74 = 35.26o and the equation for the plane 
is, 
 

 
 
OS is the vector (σ1, σ2, σ3) 
OP is vector  in the Π plane 
PS is vector (σ, σ, σ) which is parallel to the dashed line and perpendicular to the Π plane 
Clearly, the yield surface is a right cylinder and its intersection with the P plane defines the curve C 
 
The sketch below is in the Π plane and C defines yield surface. 
 
 
 
 
 
 
 
    
 
 
 
 
From isotropy of the yield surface C must be symmetric about LL’, MM’ and NN’ 
From no Bauschinger effect C must be symmetric about the perpendiculars to LL’, MM’ and NN’ so 
that every 30o section has the same shape. 
 
Lode (1926) introduced a parameter, µ, that is helpful for designing some experiments. 
 

 

 
If an investigator is certain the material being tested is isotropic with no Bauschinger effect then 
experiments are required only over the range  ( ).  To illustrate, 
 

 

 
Possible experiments: 
 

1. Combined torsion and tension of thin-walled tube 



 59  
 
 σ = tensile stress, τ = shear stress 
 

  

 
2. Combined tension and pressure on thin-walled tube (neglect radial stress) 

 

  

 
Two yield surfaces: 
 

1. Tresca (1864) 
 

Order principle stresses so that  then yielding occurs when σ1 – σ3 
=( twice the maximum shear stress) reaches a critical value. A more general form of the 
Tresca condition that is virtually never used is, 

 
   
 
2. von Mises (1913) 

 
   
 
  For tensile test, yield point tensile stress =  and k = shear stress yield point stress 
 
When the two yield surfaces are compared, the yield points are usually adjusted so that the tensile yield 
point stress is the same from both criteria, see the figure below. 
  
 
 
 
 
 
 
    
 
 
 
In 1931 Taylor and Quinney published a paper which is always cited as part of the comparison of the 
Tresca and von Mises yield surfaces.  The sketch below shows the principal result. 
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Strain-Hardening, Standard Theory 
 

1. Assume isotropy is preserved 
2. Assume no matter by what strain path a given plastic stress state is reached, the final yield 

surface locus is the same.  This is not consistent with dislocation theory.  With this 
assumption a single infinity of distinct non-intersecting yield surface states exist.  All of 
these states can be obtained by different amounts of pure tension.  Therefore there is no 
Bauschinger effect. 

3. All of the yield surfaces are circular in the Π plane so that the von Mises yield surface is 
chosen. 

 

The radius of the yield surface in the Π plane =  

 

Hooke’s Law is   

 
incremental external work per unit volume done on material during straining 

 
 incremental plastic work per unit volume 

 
= plastic work per unit volume 

 
A common hypothesis for the evaluation of the yield point in tension,  that started as  is, 
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Comparison of stress-strain curves in tension, compression and torsion, 
 

Tension:    plot  F is area under the curve up to σ 

 

Compression:    

 

Torsion:    

 
In 1925 Ludwik and Scheu published experimental results for tension and compression tests on annealed 
copper.  The main result is shown in the figure below, 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
An alternative formulation appearing in the Literature is, 
 

 

 
Note that  
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The Complete Stress-Strain Relations 
 
Let  be the viscosity of a linear, incompressible fluid so that its constitutive formulation is, 
 

 

 
Metals have grains that are crystals.  For a crystal, G. I. Taylor has shown that 5 shear slip planes are 
required for a general distortion.  Dislocations move along slip planes and permit sliding at relatively 
low stress.  Once started, no increase in stress is required to continue sliding (like a fluid).  Unlike a 
fluid, grain boundaries stop the dislocations until they pile up and break across the boundary.  This is 
related to work hardening.  In view of this it is reasonable to assume the increment in  is directly 
related to σ’ij.  The relations proposed by Lévy in 1871 and, independently, by von Mises 1913 express 
this concept in the form, 
 

is not a constant, it is related to work hardening 

 
These equations direct  in the “direction” of σ’ij   Now, when the Lévy-Mises equations are 
satisfied, 
 

 

 
For a tension test, 
 

      

 
Then a plot of σ versus εP from a tension test is the H function. 
 
To summarize, when , 
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A graphical representation of this stress-strain relation is possible on the Π plane but first write 
equations in the principle directions. 
 

 

 
The figure below shows a Π plane with stress and strain superposed. 
 
 
 
 
 
 
    
 
 
 
 
 
An experimental check on the above equations was reported in 1931 by Taylor and Quinney.  The 
parameter ν was introduced with the definition, 
 

 

 
The relationship between this parameter and the Lode variable, µ, introduced earlier is shown in the 
sketch below. 
 
 
 
 
 
 
 
    
 
The results of the Taylor and Quinney experiments are shown in the figure below.  
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These results serve to remind investigators that the current theories are limited in their accuracy. 
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PLASTICITY WITH KINEMATICAL YIELD SURFACES 
 
William Prager, An Introduction to Plasticity, Addison-Wesley Publishing Company, Inc., 1959, 
Chapter 1 
 
 
 
elastic 
 
 
 
 
 
 
 
plastic 
 
 
 
 
 
 
 
 
 
elastic-plastic 
 
 
 
 
 
 
 
 
 
kinematic hardening model 
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Combined tension and torsion of a thin-walled tube ( ) 
 

 

 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

 

 
1 Vectors representing increments of stress and plastic strain are orthogonal so that the stress 

increment does no work on the increment of plastic strain. 
2 Convexity 

 
Introduce generalized forces, Qi , and generalized displacements, qi , so that the work increment, , is 
given by, 
 

 
 
The yield surface is defined by the vanishing of a function  so that, 
 
1   on the yield surface 
2   inside the yield surface 
3   must enclose point C 
 
Consider .  This will be an elastic change and, 
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The vector, , is tangent to the yield surface so the vector, , is a vector in the outward normal 

direction to the yield surface.  Therefore, the plastic flow law may be written as, 
 

 

 
An illustrative example, 
 
 
 
 
 
    
 
 
 
 
Von Mises:   
 
Plastic flow law:  
 

Invert these:   

 
Substitute these stresses into the yield condition to obtain, 
 

 
 
Then, 
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INTRODUCTION TO FRACTURE MECHANICS & FAILURE ASSESSMENT DIAGRAMS 

 
 

1.  BACKGROUND 
 
The failure assessment diagram (FAD) results from a method used to combine plastic limit load design with 
design based on crack propagation models (fracture mechanics).  This presentation is directed to explaining 
failure assessment diagrams as they are used in design.  The initial part of this presentation considers only 
perfectly plastic materials with a yield point, .  The plastic limit load is the load which will give unrestricted 
plastic flow.  
 
If the material is sufficiently brittle, flaws in the material may cause fractures to propagate from the flaws before 
the limit load is reached.  The usual procedure for designing for materials with flaws is to assume the maximum 
allowable flaw size has the most unfavorable shape and orientation.  This is generally a crack whose length equals 
the flaw size and whose orientation is perpendicular to the maximum tensile stress.  The study of the conditions 
under which the fracture will propagate is called “fracture mechanics”.  The essential elements of fracture 
mechanics are given below. 
 
The failure assessment diagram (FAD) may be constructed from the results of the plastic limit analysis and 
fracture mechanics.  This construction is described below following the review of several fracture mechanics 
topics. 
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2.  THE PHYSICAL BASIS OF FRACTURE MECHANICS 
 
The primary assumption in fracture mechanics is that, under constant environmental conditions (e.g. temperature), 
a fixed amount of energy per unit area, Γ, is required to propagate a fracture.  Γ is assumed to be a material 
property.  The rationale for fracture propagation is that an advancing fracture causes energy to be released.  When 
the energy release rate with respect to fracture area equals Γ a fracture will propagate.  When the energy release 
rate with respect to fracture area is less than Γ a fracture will not propagate.  Clearly, the energy release rate 
cannot exceed Γ. 
 
A.A. Griffith1 was the first investigator to propose the energy criterion for fracture.  For the classical case of a 
crack of length 2 . a imbedded in an infinite, elastic, thin sheet subjected to the far-field tension, , 
perpendicular to the crack, Griffith used the plane stress solution by Inglis2 to determine that, 
 

Rate of change of elastic energy with respect to a =                       2.1 

 
where E is Young’s modulus.  This rate of change is set equal to the energy required to create a new surface per 
unit area, 2 . Γ, so that, 
 

Γ                  2.2 

 
This equation gives the condition, according to Griffith, that must be reached by an increasing  in order for a 
fracture to propagate.  Γ is regarded as a material property and it is called the “elastic energy release rate per crack 

tip”.  For the case of plane strain, E must be replaced by  where ν is Poisson’s ratio. 

 
G.R. Irwin3,4,5 pointed out that part of the energy for propagating a crack was in the form of plastic deformation in 
the vicinity of the crack tip.  Irwin made several contributions to improve upon and elucidate the work of Griffith. 
 
The last equation was generalized by replacing the term  by the square of the stress intensity factor, KI

2 
for the crack.  The plane strain condition may now be written as, 
 

Γ                 2.3 

 
Further contributions to the development of contemporary fracture mechanics by D.S. Dugdale6, G.I. Barenblatt7, 
J.D. Eshelby8 and J.R. Rice9 are covered in the material presented below. 
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3.  BRITTLE FRACTURE 
 
When a fracture extends with very little plastic deformation (evaluated frequently by observing the fracture 
surface), the fracture process is described as “brittle” and elasticity theory is used to determine when a fracture 
will propagate. 
 
For a two dimensional fracture loaded with a symmetric stress field with respect to the crack tip let, 
 

               3.1  

 

             3.2 

 
where  is Poisson’s ratio and E is Young’s modulus of elasticity.  Then the stresses, , and the displacements, 

, in the vicinity of the fracture tip in an elastic material may be written as, 
 

                3.3 

 

             3.4 

 
where, see sketch below, 
 

            = a constant called the stress intensity factor 
 
r                 = radial distance from the tip of the fracture 
 

              = angular position in the vicinity of the fracture tip 
 

 = a bounded function of ,  (e.g. - ) 
 

           = an arbitrary displacement 
 

  = bounded function of  and ,  (e.g. - ) 
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These results may be used with the condition that the far field displacements are held constant and there is 
incipient crack growth.  Then, 
 

Γ             3.5 

 
where Δa is arbitrarily small and with, 
 

              3.6 

 

            3.7 

 
the result is, 
 

Γ         3.8 

 
The integral is evaluated as, 
 

          3.9 

 
so that as , 
 

Γ =            3.10 

 
or 
 

Γ =             3.11 

 
The last two equations give the incipient brittle fracture propagation criteria for plane stress and plane strain 
conditions.  These results are consistent with the results given in the preceding section. 
 
As a consequence of the above results, there have been many elasticity problems solved to find values of  (and 
other stress intensity factors) for a variety of configurations and loads.  One such solution is presented below for 
later use.  The problem considered is shown in the sketch below, 
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It is the plane strain problem for a single crack of length 2a in an infinite two dimensional body subjected to a 
pressure distribution p(ξ) on the fracture face.  The far-field stresses vanish.  The only restriction on p(ξ) is that it 
be symmetric with respect to ξ, that is, 
 
p(ξ) = p(-ξ)               3.12 
 
The solution to this problem is in the literature.  The stress intensity factor, , at x = a, y = 0 is, 
 

            3.13 

 
and the fracture opening w(ξ) for each side of the fracture is, 
 

         3.14 

 
When p(ξ) is a constant, , the above integrals give, 
 

           3.15 

 

        3.16 

 
When p(ξ) is zero in  and the constant value  in  then, 
 

            3.17 

 
Comparisons of the elastic fracture mechanics propagation conditions with measured results for brittle materials 
show that the conditions are valid predictors of fracture propagation so long as there is little plastic flow.  Early 
work in fracture mechanics was almost exclusively devoted to the kind of problems described above. 
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4.  FRACTURE OF DUCTILE MATERIALS 
 
The physical basis for fracture propagation in a ductile material is assumed to be the same as for a brittle material.  
The calculation of the energy release rate with respect to fracture area in the elastic-plastic case is more involved 
than the elastic case.  It is therefore common, for practical calculations, to make an approximation which permits 
a great simplification in the calculations of the energy release rate.  The approximation is that the material is non-
linear elastic rather than plastic so that a strain energy density function, , of the form, 
 

                 4.1 

 
exists.  This approximation has the effect of introducing deformation plasticity theory (as opposed to incremental 
plasticity theory) if there is no local unloading.  So long as the loading path is not too complex this approximation 
is acceptable.  In this case the contour integral, 
 

              4.2 

 
is independent of the contour enclosing the fracture tip.  When x is the direction of fracture propagation, the J 
integral is also the energy release rate with respect to the fracture area (under the approximation of the existence 
of a strain energy density function).  In this integral  is the component of  in the  direction and  is the 
outward unit length vector normal to the contour.  The condition that the fracture propagates becomes, 
 
J = Γ                                  4.3 
 
For a specified configuration, stress-strain curve and loads the J integral may be readily evaluated numerically.  
Finite element programs such as MARC and ABAQUS have “built in” options for computing J integrals. 
 
Note that in the linear elastic, plane strain case, the calculated values of the stress intensity factor and the J 
integral are related by, 
 

                 4.4 

 
where the subscripted I refers to a Mode I crack loading and the bar indicates a J integral value for the linear 
elastic case.  It is also convenient to define a material property, KImat, using, 
 

Γ                  4.5 

 
Therefore, KImat and Γ depend on the measured plastic behavior of the material while and KI are calculated 
using linear elastic material theory. 
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5.  THE DUGDALE-BARENBLATT MODEL 
 
This is a vastly simplified model of a fracture of length   having plastic flow regions at its ends.  The model is 
for a fracture in an infinite, thin sheet subjected to a far-field constant tension, , perpendicular to the fracture.  
The material is assumed to be elastic-perfectly plastic with a yield point of .  The plane stress model is 
sketched below, 
 

                                    
 
The fracture is modeled as an elastic fracture of length 2(a + s) where the section of length s on each end has a 
tensile stress equal to  acting on the surface.  This stress is supposed to represent the stress acting in the 

material near the tip of the fracture.  With this description and the solutions given earlier, the value of  at x = 
(a + s), y = 0 may be evaluated as, 
 

           5.1 

 
The condition, 
 

                  5.2 
 
is set so that no singularity will occur in the stress field at x = (a + s), y = 0.  This condition has the effect of 
making the tips of the fracture cusp shaped (not shown this way in the figure above).  The condition gives, 
 

                5.3 

 
The tip of the crack being modeled is at x = a and the total crack tip opening displacement, CTOD, is determined 
at this point using the solution given above as, 
 

              5.4 
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Now the J integral is evaluated using a slender contour from the crack tip to x = (a + s) so that the contribution 
from  vanishes compared to the second term in the integrand of the J integral.  Direct application of the 
above definition of the J integral noting that, 
 

              5.5 
 
gives, 
 

 

 

             5.6 

 
Note that this equation gives the value of the J integral at incipient crack propagation so for this case, 
 
J = Γ              5.7 
 
and, for incipient crack propagation, 
 

Γ               5.8 

 

Therefore, when Γ , the dimensionless, critical energy release rate, is known [it is a function of 

material properties and crack (maximum flaw) size] then  can be found for incipient crack propagation.  For 

example, when , . A plot representing this equation is given below. 
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The above figure shows that, as the applied stress increases relative to the yield stress, the dimensionless energy 
release rate required to prevent fracture growth increases rapidly.  In practice, this last equation is usually put into 
another form.  Define  as follows, 
 
KImat = the material property Γ converted to stress intensity factor units          5.9 
 

calculated elastic stress intensity factor for measured crack of length, 
 
 a                     5.10 
 
Now eliminate Γ and a from Equation 5.8 using Equations 5.9 and 5.10, respectively, to obtain, 
 

   5.11 

 
where Kr may be found when material properties Γ and E, the crack length a and the far-field stress  are 

known.  The crack propagation condition on the right-hand side of Equation 5.11 is a function of  only.  

When this equation is plotted as shown below, the curve is in the form used in a failure assessment diagram. 
 
 
 
 
 



 77  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Either of the above two curves can be used to determine a reduction of the allowable value of   which is 

dependent on the flaw size.  For example, an L80 steel is well approximated as a perfectly plastic material since 
the ratio of the ultimate strength to the yield point is about 1.1 and the elongation at failure is about 25%.  Typical 
measured, material properties for L80 are, 
 
Γ  = 600. psi-in 

     =  100,000. psi 
E       =  30.E6 psi 
 

The first of the above two curves shows that for  to have a value of 0.97 (that is, little influence from fracture 

propagation) the value of the dimensionless critical energy release rate must be, at least, about 3.  When 

Γ  is set to 3.0 with the above material properties the value for the maximum flaw size, a, becomes, 

 
a = 0.2356 inches 
 
The Dugdale - Barenblatt model predicts that if inspection procedures can ensure that all flaws will have 
dimensions less than this value then the influence of fracture mechanics is small and the design can be based on 
plastic limit analysis. 
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6.  THE LEVEL 2 FAILURE ASSESSMENT DIAGRAM FOR BURST 
 
The second curve in the preceding section is based on a perfectly plastic material.  This material model does not 
match many commonly used materials, such as K55, used in tubulars.  The materials are typically ductile but the 
ratio of the ultimate tensile strength to the yield stress ranges up to about 1.6.  While it is possible to use 
numerical methods (i.e. finite element methods) to create curves like those in Section 5 for work-hardening 
materials, it is not a practical way to proceed for day-to-day design.  To overcome this difficulty and also include 
the fracture mechanics - plastic limit analysis transition in the design process, the failure assessment diagram has 
been introduced to design codes.  These diagrams are “generalizations” of the last curve above.  The value of the 

parameter is determined by a linear elastic solution and a material property measurement.  The 

interpretation of  is more subtle.  The design codes are intended to include work-hardening materials.  The 

derivation of the Dugdale-Barenblatt results presented in Section 5 is based on an elastic - perfectly plastic 
material in plane stress so that the stresses at the ends of the crack were set equal to σy.  The strains near the tip of 
the crack are expected to be quite large so that it could be argued that the ultimate tensile strength, σULT, should 
replace σy in Equation 5.11.  In one code for Level 2 assessment, PD6493 (1991), this reasoning was used to 
replace σy by the, so called, flow stress, σf, where, 
 

                 6.1 
 
Let, 
 

                   6.2 

 
 
so that, 
 

              6.3 

 
A subsequent version PD6493 (1996) uses the above equation for Level 2 assessment of low hardening materials 
but uses an empirical equation for hardening materials. 
 
An alternative approach to defining a FAD curve was published by the Electric Power Research Institute10.  In this 
approach the Ramberg-Osgood stress-strain relationship was used to simulate real materials and find J integrals.  
The Ramberg-Osgood relations are, 
 

                 6.4 

 
 
 
where ε is strain, σ is stress; σO, α and n are constants and, 
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                  6.5 

 
The two figures below are taken from Reference 11 and show typical results from the Electric Power Research 
Institute study.  The strip yield model referred to in the figures is Equation 6.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R.A. Ainsworth12 developed some semi-empirical models that yield results similar to those in the above figures.  
One of these models has become rather popular and is included in PD6493 (1996) as well as API579.  Let, 
 

                  6.6 

 
Then Ainsworth’s model may be written as, 
 

              6.7 
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The failure assessment diagram associated with this equation is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The design codes usually interpret Lr or Sr as, 
 

           6.7 

 
Failure assessment diagrams are generally “adjusted” to account for the important parameters in particular design 
procedures.  The above review gives an elementary introduction to the basis for these diagrams. 
 
The next page is taken from the API579 design code.  It shows how the FAD curves are treated in this code. 
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COMMENTS CONCERNING FATIGUE FAILURE BASED ON FRACTURE MECHANICS 
 
This is based on Chapter 10 of T. L. Anderson’s Fracture Mechanics, Third Edition. 
 
Prior to the introduction of fracture mechanics in fatigue life predictions, the S-N curve and the 
Goodman diagram were used for this purpose. 
 
The two most successful uses of fracture mechanics have been for brittle material fracture and for 
fatigue life prediction. 
 
The application of fracture mechanics results to fatigue life predictions in the case of repeated, identical, 
cyclic loadings is to predict the crack length, a, growth per cycle.  The reciprocal of this prediction is 
integrated from an initial crack length of aO to a final crack length of aF to find the cycles, N, to fatigue 
failure.  The experimental results required to establish the growth per cycle prediction has the form 
suggested below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where the load history (based on stress intensity factors) is sketched below. 
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The physical behavior for these results is thought to be mathematically modeled using a growth rate 
equation of the following form, 
 

 

 
When there as been previous cyclic loading, this past history must be taken into account. 
 
For the central, straight-line section of the first figure, Paris and Erdogan (1960) proposed the following 
equation, 
 

 

 
This equation is usually referred to as the Paris Law.  Paris and Erdogan, based on available data, 
suggested that m 4.  Subsequent testing indicates that m lies between 2 and 4.  Note that the last 
equation is independent of the ratio R and, therefore, the equation is not consistent with the Goodman 
diagram. 
 
Other forms for fatigue life prediction may be found in Anderson’s book.  Several considerations apply 
to fatigue life predictions.  Some of these are, 
 

1. Crack closure can effectively decrease ΔK. 
2. Crack wedging may be present because of corrosion 
3. There are several proposed explanations for the existence of a threshold stress 
4. The Miner-Palmgren criterion is used for this sort of calculation 
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5. For low-cycle fatigue the classic L. F. Coffin and S. S. Manson formulation should be 

considered, 
 

(plastic strain amplitude) = εO . (NC) 
 
where εO is the strain to cause failure in one cycle, c is a constant for the material (-0.5 > c > 
-0.7) and N is the number of cycles to failure. 
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THE RELATION OF CLASSICAL MECHANICAL SYSTEM STABILITY THEORY TO 
DRUCKER’S POSTULATE 
 
 The purpose of this presentation is to show that, with a liberal interpretation, the usual 
mechanical system stability criteria are consistent with Drucker’s Postulate.  The film is rather 
comprehensive so only the slides are contained in this section.  This material was presented first as a 
seminar in 1970 by Paul Paslay at Brown University to the Mechanics Group. 
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APPENDIX 1, ADDITIONAL FRACTURE MECHANICS CONSIDERATIONS 
  
 The following five sub-sections are attached to fill in some of the details in the body of the 
earlier report.  The details are well established results that are found in fracture mechanics textbooks.  
The sole intention for including this appendix is to provide ready reference to points that may not be 
familiar to every reader. 
 

1. THE RELATION OF ELASTIC ENERGY RELEASE RATE TO STRAIN ENERGY 
 
 Consider a two-dimensional linear elastic body with a single crack of length λ and a pair of self-
equilibrating forces, P, as shown in the figure below.  LO is the distance between the load points when 
the loads are zero so that Δ is the elastic displacement on the load line.   Assume the compliance, C(λ), 
between the loads is known so that the small displacement relation between P and λ is given by, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           A1.1 
 
The strain energy associated with the loads on the body, U, is  and P may be eliminated to 
obtain, 
 

               A1.2 

 
and, 
 

              A1.3 

 
 The Principle of Minimum Potential Energy will be employed to relate the strain energy to the 
energy release rate for an increasing crack length.  The principle implies that the first variation of the 
potential energy, PE, vanish when the configuration (Δ) undergoes a variation under constant load 
conditions.  The variation, δΔ, of the configuration is described, for present purposes, as 

 with δΔ and δλ being mathematically independent.  The contribution to the 
potential energy change owing to δΔ is –P . δΔ.  The contribution to the potential energy change owing 
to δλ is based on a fundamental postulate of fracture mechanics.  The change in potential energy 
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associated with δλ is set equal to G . δ(crack area).  The change in crack area is defined as t . δλ where t 
is the thickness of the body.  The quantity G, the energy release rate, is the energy expended to increase 
the surface area of the material per unit increased area.  This energy release rate is postulated to be a 
material property so that it is the same for any problem so long as the material is not changed.  This 
means that the potential energy may be written as, 
 

          A1.4 

 
and the first variation of the potential energy, which must vanish, becomes, 
 

          Α1.5 

 
Since δΔ and δλ are independent, their multipliers must separately vanish so that, 
 

 (same as Equation A1.1) 

 

G =               A1.6 

 

Combining Equations A1.3 and A1.6 to eliminate  yields, 

 

G =                 A1.7 

 
Consequently, if a solution for the strain energy of a body containing a crack is known in terms of λ, 
then Equation A1.7 may be used to find G which is interpreted to be the energy release rate required to 
propagate the fracture (increase λ) at the imposed value of Δ.  In general, G is determined from the 
value of Δ, determined experimentally, that initiates an increase of the measured crack length.  The 
sketch below illustrates the influence of a small increase of crack length at a constant value of Δ.  The 
lines labeled λ and λ+dλ are load-displacement curves for crack lengths of λ and λ+dλ, respectively. 
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 It is important to note that the results in this section of the appendix apply only to linear elastic 
bodies.  The results are therefore applicable to many brittle materials but not to elastic-plastic materials.  
The main use of Equation A1.7 is to determine the linear elastic stress intensity factor (= , see 
section 2 of this appendix) for use in a failure assessment diagram, FAD. 
 

2. THE RELATION OF ELASTIC STRESS INTENSITY FACTOR TO ELASTIC 
ENERGY RELEASE RATE 
 
 When a homogenous, isotropic, linear elastic body containing a crack is loaded, the resulting 
stresses and displacements may be found using the theory of elasticity.  If the loading causes the crack to 
open the stresses and strains at the crack tip are singular (go to infinity).  The sketch below of a crack in 
plane stress shows the coordinates x, y and r, θ, the displacements u and v and the stresses σx, σy and τ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It is well established that the singularity causes stresses and displacements close to the crack tip 
(r sufficiently small) that may be written as, 
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                      A2.1-6 

 
where, 
 

                A2.7-11 

 
and, 
 

             A2.12-16 

 
The stress intensity factors KI and KII correspond to different modes of deformation.  When the three 
dimensional case (not considered here) is studied one more deformation mode is found.  The three 
modes are shown in the sketch below.  For the plane stress case being considered here the Mode III 
displacements cannot occur.  All of the analyses in the body of this report are for Mode I singularities. 
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 The case of Mode I displacements is now considered in order to relate KI to G.  That is, a plane 
stress case where KII = 0 is considered.  The figure below shows the case of a crack after propagation 
(upper) and before propagation (below).  The amount of propagation is α, taken to be small enough for 
the stresses associated with the stress singularity to dominate.  The change in strain energy per unit area, 

, corresponding to the propagation may be calculated directly as, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   A2.17 

 
When the stresses and displacements given in Equations A2.8-11 are substituted into Equation A2.17 the 
result is, 
 

     A2.18 

 
and, by definition, the left hand side of Equation A2.18 is the energy release rate, G, so that, 
 

G =               A2.19 
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Equation A2.19 is the desired relation between the elastic stress intensity factor, KI, and the energy 
release rate, G.  Using the same approach the following result can be established, 
 

G =            A2.20 

 
Note there are no cross products of the K’s in Equation A2.20.  In addition, when two loads, P1 and P2, 
contribute to KI, KII or KIII the stress intensity factors may be written, with obvious notation, as, 
 
KI(P1, P2) = KI(P1, 0) + KI(0, P2)           A2.21 
 
KII(P1, P2) = KII(P1, 0) + KII(0, P2)           A2.22 
 
KIII(P1, P2) = KIII(P1, 0) + KIII(0, P2)           A2.23 
 
The last three equations are valid since the stresses are linear in the K’s, see Equations A2.7-16. 
 

3. THE J INTEGRAL AND ITS PATH INDEPENDENCE 
 
 The preceding results in this appendix have been limited to the case of linear elastic materials.  
The body of this report uses an approximate method to include plasticity influences.  In the course of 
these analyses the J integral is determined.  This integral measures the energy release rate for an 
approximation to elastic-plastic material behavior.  The material limitations required to relate the J 
integral to the energy release rate are that the material be isotropic and homogeneous, the strains be 
small (compared to one) and the stress-strain behavior be derivable from an elastic strain energy 
function, W(εij), so that, 
 
W  = W(εij) = elastic strain energy function 
εij = i, j component of the strain tensor 

 =               A3.1 

ui = ith displacement component, assumed to be twice differentiable with respect to xi 
xi = ith Cartesian coordinate 
σij = i, j component of the symmetric stress tensor 

                 A3.2 

 
Although the material is, strictly speaking, elastic, the W function may be chosen so that the loading 
stress-strain curve resembles a typical measured stress-strain curve for an elastic-plastic material.  So 
long as unloading does not occur and the ratios of stress components remain constant during loading, the 
formulation is a good representation for the elastic-plastic case. 
 
 The J integral value, J, is defined for current purposes (e.g. – no body forces) as follows for plane 
stress, 
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J =              A3.3 

 
where the positive sense of integration is counterclockwise along the contour Γ in the body and, 

 
Γ = contour in the material commencing on one face of the crack, enclosing the crack tip and 
                ending on the other face of the crack 
x = coordinate parallel to the straight crack direction 
Ti = ith component of surface traction (surface traction vector = force per unit surface area) 
 =                A3.4 

ni = ith component of unit outward normal to Γ contour 
ds = differential arc length along Γ 
 
With these definitions the coordinate changes along the Γ contour are, 
 
dx = - ny 

. ds                A3.5 
 
dy = nx 

. ds                A3.6 
 
In the next section of this appendix the J integral will be shown to be equal to the energy release rate and 
this provides a physical connection of this integral to fracture mechanics.  In this section an important 
property of the integral is derived.  The property is that for a closed contour the integral is zero when 
there are no singularities inside or on the contour.  This property can be used to show that the J integral 
is independent of  Γ, that is, it is path independent for all contours satisfying the above definition of Γ. 
 
 The integrand in the J integral is now applied to a closed contour Γ0 that contains no singularities 
inside or on its boundaries.  This new integral is denoted by J0.  The derivation starts by eliminating Ti 
using Equations A3.3 and A3.4 with the result, 
 

            A3.7 

 
In this equation dy may be replaced by nx 

. ds and the order of summation changed to obtain, 
 

           A3.8 

 
The contour integrals in the above equation can be converted to area integrals by using the divergence 
theorem.  This theorem is applicable only if the integrand contains no singularities (such as those 
appearing at the tip of the crack).  Since Γ0 satisfies this condition, the theorem is applicable to Equation 
A3.8.  The divergence theorem is, 
 

              A3.9 
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where A0 is the area enclosed by Γ0.  The result of applying this theorem to Equation A3.8 is, 
 

         A3.10 

 
Recall that W = W(εij) so that the first term of the integrand may be expanded and Equation A3.2 may 
be used as follows, 
 

       A3.11 

 
Take the second term in the square brackets in the above equation, interchange the i and j indices and 
recall that σij = σji to obtain, 
 

         A3.12 

 
The force equilibrium equations (without body forces) are, 
 

              A3.13 

 
and they may be used with Equation A3.12 to determine that, 
 

           A3.14 

 

When Equations A3.10 and A3.14 are combined to eliminate  the result is, 

 
J0 = 0               A3.15 
 
 The vanishing of J0 can be used to establish the independence of the J integral.  Consider the 
choice for the Γ0 contour and sense of integration shown below.   The closed contour is separated into 
four parts Γ1, Γ2, Γ3 and Γ4.  Parts Γ1 and Γ3 are each legitimate contours for the J integral.  Let the 
integral in Equation A3.7 be separated into parts J1, J2, J3 and J4 corresponding to Γ1, Γ2, Γ3 and Γ4.  
Since J0 vanishes, 
 
J1 + J2 + J3 + J4 = 0             A3.16 
 
and, referring to the integrand of Equation A3.3, since dy and Ti vanish on the crack surface, 
 
J2 = J4 = 0              A3.17 
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so that Equation A3.16 becomes, 
 
J1 = -J3               A3.18 
 
As both Γ1 and Γ3 are legitimate Γ contours and the sense around G3 is clockwise, J1 and -J3 are 
legitimate values of the J integral and Equation A3.18 shows that the J integral is path independent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It is interesting to note that, since J2 and J4 vanish and J1 = -J3, the contribution to the J integral 
comes entirely from the strain field at the crack tip 
 

4. EQUIVALENCE OF THE J INTEGRAL AND THE ENERGY RELEASE RATE 
 
 In order to show the desired equivalence, a body containing a single crack of length λ is 
subjected to a restricted set of boundary conditions is investigated.  Each region of the boundary has one 
of the two following boundary conditions. 
 

1. The surface traction, Ti, is specified and nonsingular. Ti is defined in Equation A3.4 . 
2. The displacement is zero. 

 
For these conditions the potential energy, PE, for this body under the imposed boundary conditions and 
material restrictions required for J integral validity is, 
 
PE =            A4.1 

 
where the contour ΓB must include all of the material in the body.  It is taken as the outer boundary of 
the body not including the crack.  This contour is a legitimate J integral contour.  Consequently, the area 
AB is the area occupied by the body as required for the potential energy.  In Equation A4.1, 
 
W  = W(εij) = strain energy function 
εij = component of the strain tensor 

 =               A4.2 
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ui = ith displacement component, assumed to be twice differentiable with respect to xi 
xi = ith Cartesian coordinate 
σij = component of the symmetric stress tensor 

                 A4.3 

ds = differential arc length along ΓΒ  
 
Recall, from Equations A1.3, A1.4 and A1.5 that,  
 

              Α4.4 

 
Use the definition of the potential energy, Equation A4.1, in the left hand side of the above equation to 
obtain, 
 

            Α4.5 

 
 
 
The derivative on the right hand side in the above equation requires some explanation as the strain 
energy, W, is computed using a coordinate system located at the tip of the crack with the x direction 

parallel to the crack.  As the crack progresses, the coordinate system must be moved so that  

and therefore, 
 

            A4.6 

 
That is, there are two contributions to the “partial” derivative.  The first term accounts for the change in 
the stress distribution when the crack grows.  The second term accounts for the shift in the position of 
the coordinate system.  Consequently, 
 

           Α4.7 

 

          Α4.8 

 
so that Equation A4.7 becomes, 
 

       Α4.9 

 
According to the Principle of Virtual Work, the difference of the first and third integrals on the right-
hand side in the above equation vanish with the result that, 
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          Α4.10 

 
Combining Equations A3.3, A4.4 and A4.10 gives, 
 

J =            A4.11 

 
5. RELATION BETWEEN CTOD AND THE J INTEGRAL FOR THE DUGDALE-

BARENBLATT APPROXIMATION 
 
 In each of the solutions presented in the body of this report the crack tip opening displacement, 
CTOD, is derived and then multiplied by the yield stress, σy, to determine the value of the J integral.  
This section presents the justification for this procedure.  In each case the length of the elastic-plastic 
crack, a, is found.  The associated elastic crack has a length L where λ = L-a > 0 and the normal stress 
across the elastic crack between a and L is σy.  The length λ is the approximation to the length of the 
plastic region of the elastic-plastic crack.  The J integral from Equation A3.3 is, 
 

J =              A5.1 

 
where Γ is a contour in the material from one face of the fracture to the other face that encloses the crack 
tip.  For the problems considered here the most convenient contour is a rectangular region enclosing the 
elastic crack tip.  The y-direction height of the rectangle is chosen so small that the first term of the 
integrand is negligible compared to the second term.  The rectangle extends from the elastic-plastic 
crack tip to the elastic crack tip (crack tip inside rectangle).  Note that uy is zero on the crack axis outside 
the elastic crack so that, 
 

J =               A5.2 

 
It is noteworthy that Equation A5.2 has been shown to apply only to analyses that use the Dugdale-
Barenblatt approximation.  Equation A5.2 is not a general result. 
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APPENDIX 2, A DUGDALE-BARENBLATT TYPE APPROXIMATION FOR THE DOUBLE 
CANTILEVER BEAM SPECIMEN 

 
INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The sketch above shows the familiar double cantilever beam quasi-static test specimen with 
monotonically increasing spreading loads applied while the crack propagates.  For this analysis the 
stress state is assumed to be plane stress.  The specimen is used to measure static fracture properties of 
the specimen material.  For a brittle material the measured relation between the spreading load, P, and 
the crack length, a, may be used to determine the elastic energy release rate ΓELAS when the crack 
propagates.  When elementary beam theory is used for the cantilevers, the elastic energy release rate is 
predicted to be, 
 

                   1 

 
where E is Young’s modulus. 
 
 In this document an approximation is obtained to take into account the influence of plasticity on 
the double cantilever beam test.  The approximation follows the method used in the Dugdale-Barenblatt 
plane stress solution for a crack in an infinite medium.  That is, a stress singularity is “avoided” by 
replacing the stresses normal to the crack and in the vicinity of the crack tip with the yield point stress.  
The size of the region is chosen so that there is no singularity in the stress field. 
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ANALYSIS WITHOUT SHEAR DEFLECTION OR BASE ROTATION 
 
 The sketch below gives the approximation used here.  The centerline of the specimen is y = 0.  
When x < 0 the centerline has no deflection in the y-direction.  The region 0 < x < λ has the yield stress 
applied to the centerline and the lateral deflection of the bottom surface is not restricted.  The region λ < 
x < λ+a is modeled as an elementary cantilever beam with a lateral end load, P.  There are no side 
grooves in the specimen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In the Dugdale-Barenblatt solution the stress intensity factors at the elastic crack tip (x = 0) of a 
single crack in a two-dimensional infinite medium are determined and the length, λ, of the plastic region 
is chosen so that at the tip the net stress intensity factor is zero.  In this analysis a similar procedure is 
followed.  Consider an elastic crack of length a+λ.  In the vicinity of the ends of the elastic crack apply a 
normal stress to the crack surface.  The magnitude of the normal stress is set equal to the yield point, σy.  
This stress represents the load on the elastic region by the plastic region.  Consequently, the elastic-
plastic crack length (the actual crack length) is equal to a.   At the elastic crack tip (x = 0) for the top half 
of the specimen the stress state, from elementary beam theory, is a linearly varying bending stress in the 

y-direction and a shear stress with an average value of .  The lower half of the specimen has 

bending stresses and an average shear stress equal to the negative of the average shear stress on the top 
half of the specimen.  If the spreading force is positive at the elastic crack tip, it will develop a stress 
singularity at the tip.  This singularity is proportional to  for a crack of length of λ+a.  This 
singularity is removed by the normal stress equal to the yield point acting in the vicinity (0 < x < λ) of 
the tip of the elastic crack.  Recall that the length of the elastic-plastic crack is a. 
 
 In order to find λ, the magnitude of the J integrals (J integral = calculated energy release rate), ΓP 
and Γσ, associated with the P and σy loadings are found.  Let EI (= ) be the bending stiffness 
of each beam so that for the P loading (see above sketch), 
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 , 0 < x < λ + a            2 

 
For the σy loading, 
 

 , 0 < x < λ           3 

 
 The condition that  leads to the equation, 
 

                  4 

 
whose positive root is given by, 
 

                 5 

 
A result from fracture mechanics that is employed now is that the J integral for this elastic-plastic 
problem, ΓEP, equals the product of σy and the crack tip opening displacement (CTOD).  The location of 
the crack tip for the elastic-plastic problem is at x = λ so that, 
 

CTOD =            6 

 
and, 
 

            7 



 108  
 
so that, 
 

           8 

 
where  is calculated, using Equation 1, for a crack length of a.  The last equation defines Kr2 which 
is the approximation for the correction of the elastic energy release rate owing to plasticity influences.  If 
this correction is valid then the fracture propagation energy release rate condition, ΓMAT, is that ΓEP = 
ΓMAT.  This reasoning was used with the Dugdale-Barenblatt solution for the original Failure 
Assessment Diagram (FAD).  This diagram plots Kr as ordinate represented as, 
 

Kr =                     9 

 
against a measure of the load-to-plastic limit load.  Examination of Equations 5 and 8 shows that the 

abscissa should be .  The figure below shows the FAD curve for this double cantilever beam 

problem up to  = 0.1 which exceeds the normal values in practice. 
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 The three following curves give results based on a typical specimen size and material. 
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 It is interesting to note that, while the beam bending moment at the tip of the elastic-plastic crack 
equals P . a, the beam bending moment at the tip of the elastic crack is zero. 
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APPENDIX 3, REVIEW OF THE MULTI-YIELD SURFACE, KINEMATIC HARDENING 

PLASTICITY THEORY 
 

1.  GENERAL THEORY 
 
1A.  The π-Plane and a Single Yield Surface 
 
 The theoretical basis of the plasticity theory used for the PLASTIC program is described in the 
paper “A Small-Strain Plasticity Theory for Planar Slip Materials” which is appended to this review.  In 
the appended paper a continuum of yield surfaces is used.  This continuum, for example, makes it 
possible to match the results of a tension test exactly.  For this study the continuum of yield surfaces is 
replaced by a discrete number, ISURF, of yield surfaces.  This modification produces a tension test 
stress-strain curve which is piece-wise linear with ISURF+1 linear sections.  The description below 
assumes the reader is somewhat familiar with kinematic hardening. 
 
 Consider first an elastic-plastic material with a single yield surface.  The yield surface is defined 
in a strain space with components eij (i = x, y, z and j = x, y, z).  In the annealed, initial state the yield 
surface is a circular cylinder whose axis passes through the origin in principal strain space.  The axis of 
this cylinder is perpendicular to the π-plane (any plane making equal angles with each of the three 
principal strain axes).  For a specified principal strain state, eij, the corresponding projection point on the 
π-plane is not influenced by the addition of a strain increment that is perpendicular to the π-plane.  
When these perpendicular increments are added to eij the result, etij , can be expressed as, 
 
etij = eij + C . δij 

 
where δij is the Kronecker delta and is defined by, 
 
δij = 1      i = j 
     = 0      otherwise 
 
Consequently, the projection on the π-plane of any strain state can be shifted to one, common π-plane.  
The π-plane containing the origin of the principal strain space is selected here so that the, so called, 
deviatoric strain state,  , which plots onto the π-plane containing the origin, is deduced from eij as, 
 

 

  
where repeated i, j or k indices in a term imply summation on x, y, z and  obviously has the property, 
 

 = 0 
 
Another way of understanding the projections in the principal strain, e1, e2, e3, space is to use unit vectors  

 in the e1, e2, e3  directions, respectively, so that the principal strain vector, , becomes, 
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This vector can be resolved into components perpendicular to and parallel to the π-plane.  The 
component perpendicular to the π-plane is parallel to the unit vector  where, 
 

 

 
The component of  in the  direction is  so that, 
 

 

 
Then the component of  in the π-plane is  -  which will be designated  so that, 
 

 

The vector  lies in the π-plane containing the origin.  The length of this vector is  or, 
 

 
 
This result may be written in general x, y, z coordinates (remembering that repeated i, j, or k indices in a 
single term implies summation over that index) as, 
 

 
 
A single yield surface in the annealed state is a right, circular cylinder of radius  so that, 
 

 
 
This seemingly awkward choice for the radius has a historical basis which will not be discussed here.  
The intersection of this cylinder with the π-plane is obviously a circle in the π-plane. 
 
 When plastic flow occurs for this single yield surface case, the circle translates in the π-plane 
while the yield cylinder axis remains perpendicular to the π-plane.  In this process the cylinder axis is 
displaced from the origin.  The strain state principal strains define a strain point in principal strain space.  
This strain point moves in the strain space as the loads on the material change.  So long as the path 
followed by the strain point lies within the current yield surface further plastic flow will not occur and 
the material instantaneous response will be elastic. 
 
 When the strain point lies on the current yield surface then it is possible for additional plastic 
flow to occur.  Consider a small change of position of the strain point when it lies on the yield surface.  
If this small change does not take the strain point outside the current yield surface then no additional 
plastic flow occurs.  If the small change takes the strain point outside the current yield surface then the 
yield surface shifts so that the new strain point lies on the yield surface in its new position.  This small 
change in strain point position causes plastic flow and the current yield circle in the π-plane containing 
the origin shifts parallel to a line joining the center of the yield circle and the strain point  (which also 
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lies in the π-plane containing the origin) on the boundary of the yield circle.  The change of position of 
the center of this yield circle equals the change in plastic strain corresponding to the small change in the 
position of the strain point.  It is worthwhile to note that the flow law described above has the important 
property that the plastic strain point always lies in the π-plane containing the origin.  Therefore the sum 
of the plastic normal strains vanishes.  For this small strain theory the vanishing of this sum is equivalent 
to the condition that the plastic volume change vanishes.  This result also implies that the deviatoric 
plastic strain equals the plastic strain.  The location of the center of the yield circle in the π-plane 
containing the origin is controlled by the coordinates ρ1, ρ2 and ρ3 of the principal plastic strain vector, 

.  The corresponding plastic strain coordinates in the general x, y, z coordinate system are ρij.  As 
noted above, 
 
ρkk = 0 
 
so that, 
 

 
 
In the following presentation  will be used. 
 
The externally applied stresses, sij, associated with the material element under consideration are 
separated into their mean and deviatoric parts as, 
 
mean stress =  
 
deviatoric stress component =  
  
The mean stress is related to the volume change of the material.  Since there is no plastic volume change 
the elastic stress-strain equation for volume change is always valid so that, 
 

 

 
where 
 
E = Young’s modulus of elasticity 
 
υ = Poisson’s ratio 
 
The deviatoric stress, , is related to the deviatoric elastic strain,  , through the usual elastic 
stress-strain law as, 
 

 
 
where G, the shear modulus, is given by, 
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The condition for yielding in this plasticity theory is influenced by the existence of a back stress.  This 
back stress is hypothesized on the basis of dislocation pile-ups at the grain boundaries of the 
polycrystalline metals under consideration.  For the case where the dislocations cannot cross the grain 
boundaries it is reasonable to assume the back stress is proportional to the plastic strain.  Therefore, 
define the back stress to be λ.  and then the condition for yielding should be related to the difference 

between the deviatoric stress  and the back stress λ.  .  For the yield condition the 
strain quantity of interest is  where, 
 

 

 
Thus the yield condition after plastic flow has occurred is, 
 

 
 
which defines the yield condition on the π-plane containing the origin as a circle with radius  and 
center coordinates κ.ρ1, κ.ρ2, κ.ρ3.  When the above yield condition is satisfied and the next small 
increment of strain,  , is such that, 
 

 
 
then plastic flow occurs.  The corresponding change in the plastic strain,  , is determined by the 
requirement that the new strain points defined by   and   satisfy the yield condition.  
This requirement, to first order changes in the strains, gives, 
 

 

 
which is a shift of the yield circle center in the π-plane containing the origin in the  direction. 
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1B.  Extension from a Single Yield Surface to Multiple Yield Surfaces 
 
 The appended paper uses a continuum of yield surfaces to represent the material model.  In the 
formulation given here a discrete number, ISURF, of yield surfaces, replaces the continuum.  A physical 
basis for thinking of these yield surfaces is that each surface represents a fraction of the crystals in the 
polycrystalline material.  This fraction would include all crystals with orientations whose yield stresses 
approximate the yield stress value for that yield surface.  The fundamental notions are that each crystal 
has the same total strain, eij , and that the stresses vary from crystal to crystal according to the orientation 
of the crystal. 
 
 The stress state is given as a summation over all the crystals according to their fractional 
representation.  Since there is no volumetric plastic strain the volumetric elastic law, 

 

 

 
applies in this case.  The deviatoric stress is given by, 
 

 

 
The quantity K(l) is an elastic constant corresponding to the lth yield surface and  is the plastic 
strain associated with the lth yield surface.  Since  will equal zero for all values of l in the annealed 
state and eij is measured from the annealed, stressless configuration, the initial response is elastic and the 
K(l) values must satisfy the condition, 
 

 

 
so that, 
 

 

 
and  
 

 

 
The yield condition for the lth  yield surface is, 
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where the values of r(l) are ordered so that r(k+1) > r(k).  Note that the same value of κ is used for all 
the yield conditions so that the back stress for the lth yield surface has a proportionality to  that is 
independent of l. 
 
The condition that the yield condition is continuously satisfied during loading is found by requiring that 
when the small change of strain  occurs the corresponding change in  be 
governed by, 
 

 
 
so that, 
 

 

 
 
         This completes the general theoretical basis.  The required constants for the complete model of the 
polycrystalline material are, 
 
υ      = Poisson’s ratio 
κ        = work hardening parameter 
ISURF  = number of yield surfaces 
K(l)    = modified stiffness, l = 1, ISURF 
r(l)  =  (lth  yield surface radius in the π-plane), l = 1, ISURF 
 
These values must be obtained from experiments. 
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2.  USING THE TENSION TEST TO EVALUATE THE MATERIAL PROPERTIES 
 
 When Poisson’s ratio and a tensile test stress-strain curve for an annealed specimen are known, 
then the parameters for the material model may be found.  The stress-strain curve starts at coordinates 
(0,0) and extends to the maximum stress of the tension test.  The maximum strain in the tensile test must 
cover the extent of the strain being modeled. As this model is for small strains the maximum strain for 
the mathematical model should not exceed about 0.20. 
 
 Most annealed metals have stress-strain curves, in the region of 0. to 0.2 strain, that begins with 
an elastic region and ends with a linear section whose slope is much less than the original slope of the 
material.  The first step for finding the model parameters is to select a number, ISURF, of points (not 
including the origin) on the stress-strain curve that give an adequate representation of the curve.  The 
first point should be at the end of the elastic region and the last point should be at the beginning of the 
linear part for larger strains.  Identify the points chosen on the stress-strain curve as, 
 
eax(l) = lth  axial strain, eax(k+1) > eax(k),  l = 1, ISURF 
 
sax(l) = lth  axial stress corresponding to eax(l),  l = 1, ISURF 
 
In addition, the ratio of the slopes of the stress-strain curve for the large strain, linear part to the elastic 
region should be evaluated.  Denote this ratio as [slope ratio]. 
 
 The value of the Poisson’s ratio, υ, is specified (it must be less than 0.5) and Young’s modulus, 
E, is given by, 
 

 

 
then the shear modulus, G, is found from, 
 

 

 
 In order to deduce further properties for the model from the stress-strain data it is necessary to 
solve the tension test problem using the mathematical model equations described above in the preceding 
section.  Let the z-axis lie in the direction of the tensile loading stress, sax .  Then szz equals sax  and all 
other stresses vanish so that the non-vanishing deviatoric stress components are, 
 

 

 



 118  
Owing to the symmetry about the z axis the axial, eax, and lateral, - elat, strains are the only strains so that 
the non-vanishing strain components are, 
 
exx  = - elat 
 
eyy  = - elat 
 
ezz  = eax 
 
and the only non-vanishing deviatoric strains are, 
 

 

 
The symmetry of the problem also leads to a simplification of the plastic strain formulation.  The non-
vanishing components of the plastic strains may be written for l from 1 to ISURF as, 
 

 

 
The lth yield condition becomes, 
 

 
 
When this yield condition is satisfied the corresponding loading condition is, 
 

 
 
When both the yield condition and the loading condition are satisfied for a particular value of l the 
incremental plastic flow is given by, 
 

 
 
 The elastic compressibility condition is, 
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so that elat may be written as, 
 

 

 
The axial deviatoric stress-strain equation gives, 
 

 

 
This equation may be written in incremental form as, 
 

 

 
Before continuing to find the K(l) quantities, consider the case where the strain point has 

contacted all the yield surfaces and the loading is continued.  This case can be used to find κ.  In this 
case, 
 

 
 
Combining the last two equations and using the condition that the sum of all the K(I) values equals 

 gives, 

 

 

 
The equation for elat given above (i.e.-five equations above) may be written in incremental form as, 
 

 

 
Eliminating Δelat between the last two equations and noting that the quantity [slope ratio] defined earlier 
is given by, 
 

 

 
yields, 
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so that this equation determines κ based on data from the measured tensile test stress-strain curve. 
 
 Now return to the deviatoric stress-strain equation and the incremental form of the equation for 
elat .  Combining these equations to eliminate Δelat gives, 
 

 

 
 The values for K(l) for l from 1 to ISURF are found successively using the last equation.  
Referring now to the input data eax(l), sax(l), l = 1,…, ISURF described previously, let, 
 
Δsax  = sax(2) - sax(1) 
Δeax  = eax(2) - eax(1) 
 
For this increment of loading the plastic strains, ρax(l), are, 
 

 

 
Then, from the incremental, deviatoric stress-strain equation, the value of K(1) may be found.  This 
equation is, 
 

 

 
When K(1) has been found using this equation, K(2) may be found using, 
 
Δsax  = sax(3) - sax(2) 
Δeax  = eax(3) - eax(2) 
 
and, 
 

 

 
so that 
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This procedure can be repeated for each input strain and stress increment so that K(1),…, K(ISURF - 1) 

can be found.  Then the condition that the sum of K(l) for l from 1 to ISURF equals  may be used 

to find K(ISURF) as, 
 

 

 
The procedure described above determines all the required parameters for the mathematical model based 
on a specified value of Poisson’s ratio and a stress-strain curve. 
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APPENDIX 4, SOME FORMULAS 
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Polar Coordinates 
 

   

 
Schwarz’ Inequality 
 

    The last equation may be verified by expansion 

 
i.e. - the product of the lengths is greater than their dot product squared. 
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APPENDIX 5, THE PRANDL-REUSS EQUATIONS FOR PERFECTLY FLASTIC FLOW 

 
Stresses: σx, σy, σz, τxy, τyz, τzx  
 
Reduced stresses: 
 

 

 
Engineering strains: εx, εy, εz, γxy, γyz, γzx  
 
Reduced strains: 
 

 

 
Hooke’s law 
 

 

 
Von Mises yield condition 
 

 
 
Prandtl-Reuss formulation 
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