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INTRODUCTION

This study “returns” to an important case of vortex-induced vibrations (VIV) that
has been studied for over 60 years. Den Hartog' has described the phenomenon and cited
several occurrences of practical importance. A review of VIV studies up to 1994 is
provided by Blevins® in his comprehensive treatise. The progress made in understanding
the phenomena and documentation of specific cases is significant. A commercial
computer program’ is available for offshore marine risers.

An elementary analysis useful for design is presented using observations cited in earlier
work®. The case for a straight, uniform, beam-column simply supported at each end and
subjected to a uniform velocity fluid flow perpendicular to the beam-column axis is
considered. The axial effective force on the beam-column is constant and its cross
section is for a standard circular tube. The fluid surrounding the beam-column is infinite
in extent. Elementary, conventional equations and assumptions are used in the analysis
of this case. The case of most interest (resonance case) is when the frequency of
oscillation of the vortex forces equals the fundamental natural frequency of the beam
column. The resonance case mode shape is a half sine wave. The resonance case is the
only one considered in this work. The results of the analysis predict the motions both
perpendicular and parallel to the flow direction. Since all of the required initial
conditions are not known a priori, the numerical integration of the equations is extended
to 10 cycles which is adequate for determining the steady-state prediction.

The steady-state predictions obtained from the analysis may be more useful for
some problems than one may initially recognize. For example, marine risers are usually
sufficiently long so that the vortex exciting frequency from ocean currents is many times
(typically 30 to 50 times) the fundamental natural frequency of the riser. The higher
natural frequency mode shapes resemble sine waves so that each half wave in the riser
mode shape may be approximated as a single, simply supported beam-column under
constant tension. Furthermore, for the higher modes the end conditions for the riser ends
have little influence, except near the top and bottom of the riser, on the mode shapes and
natural frequencies of the riser. Another way of modeling such a problem is that every
vortex exciting frequency is a natural frequency. This view is further supported by the
experimental observation that the vortex exciting frequencies will shift a bit so they can
be synchronous with the riser natural frequency. Since the tension varies with depth in a
riser several predictions from the analysis presented here should be sufficient to establish
the expected stress and displacement amplitude levels in the riser and the necessity for
adding vibration suppressors to the riser (see Reference 2, Section 3.6).



NOMENCLATURE

Cp = constant drag coefficient for beam-column
CL = constant lift coefficient caused by vortex shedding
D = uniform diameter of beam-column
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E- EI-(E) + TE-(E)

L L
EI = uniform bending stiffness of beam-column
Fp  =drag force/length on beam-column, a function of t and x
Fo = lift force/length on beam-column, a function of t and x
Fx  =x-component of force/length on beam-column, a function of t and x
Fy  =y-component of force/length on beam-column, a function of t and x

L = length of beam-column between adjacent, simple supports
m = uniform mass/length for beam-column
m = uniform added mass/length from fluid
S = Strouhal number
TE = constant effective tension in beam-column
t = time, an independent variable
U = uniform flow velocity in the negative z direction, perpendicular to the rod axis
\Y = relative velocity magnitude of flow to strumming beam-column
y o3
U
= coordinate to center of beam-column and lateral to flow, a function of t and x
= value of y at center of beam-column, a function of't

W Z
U
= parallel to flow coordinate to center of beam-column, a function of t and x

= value of z at center of beam-column, a function of t
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§ = inclination of V to flow direction

C = uniform structural damping parameter for beam-column
u = absolute viscosity of flowing fluid
v = kinematic viscosity of flowing fluid

P = mass density of flowing fluid

Q) = circular frequency for Fp
Q)

= fundamental, natural, circular frequency of submerged beam-column



REVIEW OF ELEMENTARY EQUATIONS AND ENSUING MANIPULATIONS

A. STROUHAL NUMBER

z

The above sketch shows a generic cross section of a rod whose axis, the x-axis, is
perpendicular to the page. The rod is simply supported at each end and subjected to a
uniform velocity of magnitude U in the negative z direction. The absolute velocities, y

and z, in the y and z directions are shown in the sketch.

(©)

The sketch immediately above shows a) the relative fluid velocity vector, V, with
respect to the rod at its inclination, f3, to the z-axis, b) the resulting drag and lift forces Fp
and Fp and c) the resolution of Fp and Fy into Fy and Fz in the y and z directions. Recall
that, in practical cases, the maximum, single-peak amplitude of lateral motion, ymax, 18
roughly equal to the riser outer diameter, D. Therefore the maximum lateral velocity is,
approximately, the product of ymax and the circular strumming frequency, w, as deduced
by the Strouhal number®. The ratio of this maximum lateral velocity to the free stream
velocity, U, is,

(maximum lateral velocity) -y,

(free stream Velocity) U

Under typical circumstances the Strouhal number, S, is approximately equal to 0.2 and it
is defined by,
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so that,

(max imum lateral Velocity) 2:7S Y

; =1.057 Fmax
(free stream Velomty) D

In addition, the experimentally observed value of ymax 1s usually equal, approximately, to
D so that the above velocity ratio is equal, approximately, to one. Consequently, the
maximum value of the angle  shown in the second sketch above is too large to be treated

as a linearized perturbation.

Careful measurements of the vortex exciting frequency have shown that the
Strouhal number is a function of Reynolds’ number; see Reference 2, page 48, Figure 3.3.
The Reynolds’ number, RE, is defined as,

_pV-D
w

RE

For the numerical scheme in this analysis, values of S = S(RE) from the figure below are
used.
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B. DRAG AND LIFT FORCES

Since P cannot be modeled as being small compared to one, the following
expressions are appropriate,

V=yU+z)+y> >0

sinf} = y
w/(U + z)z + y2
cosf = (U+2)
1/(U + z)z + y2
so that,

F, =-F, -sinf +F, -cosf
F, =-F, -cosp - F, -sinf

The values for Fp and F. are not well established for cases where {3 varies rapidly with
time. It is common in such situations to neglect the influence of the rapid 3 variation on
the lift and drag forces so that the steady-state form of the lift and drag equations is used.
This analysis also neglects the dynamic (3 influence on the lift and drag forces so that,

F, = classical lift force/length, g V A%-D'C'| | : L-sin(() t )

F, = classical drag force / 1ength,p|

Vv =\%'D C'| | .
so the equations for Fy and Fz become,
F,=1:pV-D-(-C,-y+C, -(U+z)sin(w-t))

F,=-1:p-V-D-(C, - (U+z)+C, -y-sin(w-t))



C. ADDED MASS

When the beam-column moves relative to the fluid, the fluid in its vicinity also
moves. The forces on the beam-column caused by the mass of the moving fluid must be
taken into account if the lateral relative velocity changes. The phenomenon is
represented as a mass added to the beam-column mass. The amount of this added mass is
computed using a potential flow solution” >. Since the origin of the vortex force
excitation is caused by a stagnation region oscillating on the beam-column surface, it is
clear that the flow has a turbulent region in contradiction to the laminar flow implied by
the potential flow solution. In spite of this shortcoming, the potential flow solution is
normally used in other analyses and it will be used here. The added mass per unit length
for the potential flow solution equals the mass per unit length of the displaced fluid,

1.p-7-D? and this value is used here and denoted by m .



D. BEAM-COLUMN FUNDAMENTAL NATURAL FREQUENCY

The equations for beam-column theory® are a modification of the usual beam
theory that includes the influences of an axial force applied to the beam. The equations
are used extensively to obtain axial, compressive buckling loads. This study is
restricted to axial tensile loads TE. The classical method for finding natural
frequencies for beam-columns neglects all external forces except rigid support forces as
well as damping forces. In this case the governing equation for motions in the x-y
plane becomes (for the x-z plane replace y by z),

(m+m)y+El-y"-TE-y"=0
where y = y(x,t), an overhead dot implies differentiation with respect to time, t, and the

apostrophe symbol implies differentiation with respect to distance, x. The boundary
conditions for this problem are,

y(0,t)=y(L,t)=y"(0,t)=y"(L,t)=0
That is, the lateral displacements and moments vanish at x =0 and x = L.

The x dependence for the fundamental mode shape for the above equations is
removed with the following half sine wave expression,

y=y(xt)= ?(t)'sin(” %) - y'sm(n %)

so that y is the single peak lateral amplitude of vibration at x =1-L. When this

expression is substituted into the above differential equation, the following equation
results,




E. DEVELOPMENT OF GOVERNING EQUATIONS

In Section D above the version of the governing beam-column equation for
finding the natural frequency was given. When the external fluid forces and beam-
column damping are included in those equations, the following equations result,

(m+1) y€2ony ELy¥-TE y' F- =

Y

(m+m)Z€done El-2%-TE 2" F- =

zZ

Inclusion of Fy and Fz in the equations causes them to be coupled. The equations given
in Section B are now used to express Fy and Fz in terms of Cp, C, D, U, yand z. The

expression for V is expanded through second order terms in y and z to obtain.

1+£+%. A
U U

When the equations,

V=U-

’ = Z(X,t)=2(t)-sin(n-%) - z-sin(n%)

are introduced, there is an explicit dependence of x in the equations. This dependence is
artificially removed by integrating the equations on x from x = 0 to x = L and setting the
results to zero. This approximation has an averaging influence on the equations. After
these steps the first two equations of this section become,
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The symmetry of this problem ensures that the mean value of y is zero. In order to

adjust the displacement Z to one that has a mean value of zero the following change of
variable to z is introduced,

. p-D-C,-U?
El- %+ TE - %

L4

Z=5-

ENE

With this alteration the governing equations become,

(m+1h)-y € 2ony- ‘EI;+(TE’£—2+ y-’i—i)-_

_TC'p'D. CL'U3(DSﬁ]( ()__i[} Dy 2.'C+$J z Sl%l’\(l) t ( C)——élj ¥z =LA
4U - +dg U (@429 Jeing - )-€ 55 simo 7 (1)

(m+ﬁ1)-§-g2(x)ma- -EI" +(TE’£—1+ V4 :—)A

rp-D [2CoU@sin( C)- 7,0 € -z, (7 +177)

AU il U yasin( -O+y - Csipwdt (-)
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NUMERICAL SCHEME FOR SOLVING GOVERNING EQUATIONS

The last two equations of Section E are transformed to dimensionless variables

before performing a numerical integration. The new, dimensionless variables are defined
as follows,

yooy
U

g0z
U

T=Ww"t

Also define the following notation,

FAC=m+m

m

These changes convert the governing equations to the following form,

FAC-Y_+2-T-Y + =Y
’ Tomrw
_CD.(E.YT+1.YT.ZT+L.YTZ)+
_E.(p-D'U)' xr 2 7 3w
almo e (1u2z Ly Lz 2 yog -sin (t)
T 4 2 3w ’

FAC-Z_ +2CZ, +

2

'Z=%-(p.D.U)'CD

m-o m-o
Cp- 1+i-ZT+l-YT2+l-ZTZ+i-YTZ-ZT +
T 4 2 3w ’

2 1 2
C,' &Y. +—Y.-Z +—-Y.*)sin(t
- (n T2 Y 3em )-sin()
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The left-hand side of the first equation indicates the fundamental natural frequency, ®_,

n

is given by,

/ E
W, =
FAC-m

Since only the resonant case is being considered and the excitation is from the
vortex shedding, the Strouhal number also determines the natural frequency as,

2-w-U-S
0, =—
D

In order for the last two equations to be consistent, the value of ®_ from the second w,

equation is used to determine the value of L in E so that,

T T

TE, [(TEY ., (FAC'o,) | TE |(TE\" 16-° (FAC-U-SY’
TR (EI) * El El | EI El D

And the governing equations become,

FAC-Y_ +2C'Y, + FAC'Y

_CD'(E'YT"'l'YT'Zr"'i'YTz)"'
_E_(p-D-U)- T 2 7 3w
4\ mo C, - l+i-ZT+l-Y12+l-ZTz+L-Yr2-ZT sin (t)
n 4 2 3w ’

FAC-Z . +2-C-Z. +FAC-Z=£-(p.D.U)'CD
’ ’ 4 m-m

Cp- 1+i-Zr+l-Y12+l-th+i-Y2-ZT +
_ P T Y ’

4 m-m 1

_x.(pDb-U
C '(—Z-Y +—Y 7 +—2 -Y.?)-sin(t)
Pl ot 2 T T 3y T

Note that the steady-state solution for the dimensionless displacements may be found

when FAC, C, @ , Cp and Cy are specified. The method used here for finding the

n

steady-state solution is to estimate a set of initial conditions (since the actual values are
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unknown) and numerically integrate them until the displacements become essentially
cyclic. The cyclic behavior is the steady-state solution. For the illustrative problems
presented below the steady-state is reached in less than 10 cycles for Y. The estimates
for the initial conditions are,

2. .
Att=0  Y=0, y, %D Z-0.05- 2D




ILLUSTRATIVE EXAMPLE

INPUT DATA FOR PROGRAM VIVN2:

EI = bending stiffness, Ibf-in’ =16.1E6
m = mass per unit length, Ibf-sec’/in’ =0.001

TE = effective tensile force, 1bf = 500.

D = diameter, in =2.00

U = fluid velocity, in/sec =24.0

p = fluid mass density, Ibf-sec’/in* =0.960E-4
v = fluid kinematic viscosity, in*/sec =0.00160
CDh = fluid drag coefficient =1.20

CL = fluid lift coefficient =1.00

C = structural damping coefficient =0.00

INTERMEDIATE OUTPUT DATA FROM PROGRAM VIVN2

Wy = fundamental, circular natural frequency, rad/sec = 14.36

FREQ = frequency, cyc/sec =2.285

L = length of half sine wave, in =293.6

RE = Reynolds’ number =0.3000E5

STN = Strouhal number =0.1905

rRom = LDV = 0.3209
m-o,

ESD = E 5 =1.302
m-m,

FACc =2r0M = 1302

13
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The illustrative example reported above is for a steel tube with OD = 2.0 in and
ID = 1.5 in, under an effective tension of 500 Ibf submerged in water at 65 °F and
flowing at 2 ft/sec. The standard value of Cp = 1.2 was used while the speculated value
of C. = 1.0 was chosen. The first illustrative example figure above shows the
fundamental frequency of vibration for the lateral motion is 2.285 cyc/sec while the
fundamental frequency of vibration for the axial motion is 4.57 cyc/sec. The amplitude
of lateral motion is 1.4 inches which is 70 % of the OD.

ymax

Reference 2, Page 71, Table 3-2 gives results of earlier analyses for at

resonance. For this illustrative case the applicable results are,

Wake Oscillator Model’ % =1.576
Griffen and Ramberg Model® % =1.490
Sarpkaya Model’ % =1.509

All of these predictions are more than twice the prediction of Ymax = 070 from the

illustrative case. The current analysis has a number of assumptions that make its
predictions subject to error. In addition, it is the only analysis using Cp = 1.0. An

increase in the value of Cy, or a decrease in the value of Cp will increase%. Since the
value of Cp has been established experimentally within close limits for a Reynolds’
number of 30,000, it is not likely to be the primary source of error. An influence that is
not considered in this work is that the drag coefficient can be increased substantially
owing to the laterally induced motion, Reference 2, Section 3.3. Since an attempt to
account for this phenomenon would worsen the spread in the current results and the three
given above, it is not pursued. If the value of Cp = 1.2 is accepted, then the value of C.
can be adjusted to match the above results. When this procedure is followed, C;. must be
greater than 2.0 to match the three results above. This high value for Cp seems to the
author to be inconsistent with the usual explanation for the lift phenomenon for the
problem. The usual explanation is that a region of stagnation moves from side to side of
the beam-column as the lateral motion proceeds. The region of stagnation should have,
approximately, the free stream pressure.

The second figure for the illustrative problem is a Lissajous figure of the y and z
directions motion. This is the type of figure that is often measured for the motion; see
Reference 2, Page 94, Figure 3-31. This figure shows that the period of axial motion is
half that of the lateral motion as predicted by Program VIVN2.
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SOME INFLUENCES OF PARAMETER VARIATIONS
In this section the illustrative problem in Section F is used as a base case and one
parameter is varied to obtain its influence on the solution. This procedure is followed for

each of the following parameters with their values for the base case given below,

p-D-U

=0.3209
m-w
Co =1.20
Co =1.00
[« =0.00

In the figures below, AZ is the maximum variation of Z in the steady-state while
ZMEAN is the mean value of Z in the steady-state. Ymax and AZ/2 are single peak
amplitudes and yu,r = y. All results in this section are for steady state conditions.
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DIMENSIONLESS Az/2 & ZMEAN

RATIO OF SINGLE AMPLITUDE LATERAL

DISPLACEMENT TO DIAMETER
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2.

MAXIMUM LATERAL, DIMENSIONLESS
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DIMENSIONLESS, MEAN AXIAL

ZMEAN

RATIO OF MAXIMUM LATERAL

DISPLACEMENT DIVIDED BY DIAMETER
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3.

DIMENSIONLESS SINGLE AMPLITUDE
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Ymax = DIMENSIONLESS SINGLE LATERAL

DIMENSIONLESS AXIAL SINGLE AMPLITUDE
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SOME OBSERVATIONS

1.

Vortex-induced vibration for a very elementary case is modeled using forces
on a simply supported beam-column subjected to a uniform fluid flow normal
to the beam-column axis. The forces are determined using the Morison
equation'®.  The analysis includes second order terms in the velocity
components. Beam-column displacements both parallel and perpendicular to
the flow direction are included.

The results are qualitatively OK. They should be helpful in designing
experiments and estimating influences of parameter changes.

The predictions for the lateral motion amplitudes are disappointing when
compared to reported experimental values. The predictions presented above
show that the lateral motion amplitudes are strongly dependent on the lift
coefficient. In Reference 2, Figure 3-16, Page 64 the values of the
experimental lift coefficients are all less than 1.4 with an average closer to 0.8.
The illustrative example used Cp = 1.0 and predicts a lateral motion amplitude
less than one half of the results cited on Page 14 above. The figure on Page
20 shows that this analysis requires a value for Cp of about 2.0 to match the
Page 14 results.

In order to evaluate the importance of including the axial motion of the beam-
column in the analysis, the above formulation was altered to set the axial
displacement of the beam-column to a constant in the steady-state. The same
input data to this modified program was used that was used for the top figure
on Page 14 above. The lateral displacement amplitude as a function of
dimensionless time is shown below. Comparison of this figure with the top
figure on Page 14 shows that the steady-state solutions are virtually the same.
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The governing equation for the above figure is,
FAC-Y_ +2-C-Y +FAC-Y

_n(pDU
4 m-m

2

2 1
A-Ch (=Y. +—-Y)+C, [1+=-Y.?|'sin(x
) l D (TE T 3_31: ,‘c) L ( 4 ,T ) ( ):|

At resonant conditions in the Harmonic Model described in Reference 2,
Section 3.5.1, pp. 61-67, this equation is linearized and Cp is set to zero. The
result is,

T -D-U?
y P

resonance = 82; FAC'm'(Dn2 L

Note that the amplitude is inversely proportional to C. The amplitude is predicted
to be infinite at resonance when the beam-column damping is set to zero. This
result is not useful in the current study and it demonstrates that non-linear
influences must be included in order to have a useful analysis.
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The vortex shedding phenomenon has been studied experimentally. The vortex at
resonance normally separates from the upper side of the cylinder when the peak
lateral displacement is reached and the new vortex immediately starts forming on
the lower side of the cylinder. In many resonant analyses the lateral force
imposed on the cylinder by the fluid is assumed to be sinusoidal in time. It seems
to the author that the sinusoidal assumption could legitimately be questioned. As
a result, the calculation procedure described above (starting on page 10) was
altered to change the sinusoidal wave to a square wave. The salient results are
shown in the figures below.
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The above figure shows that the square wave forcing function yields predictions
that are more in line with published experimental results than the sinusoidal forcing
function.
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CONCLUSIONS

The initial analysis presented above shows that an elementary examination of a
vortex-induced vibration problem using a long beam-column, classical fluid mechanics
methods and contemporary modeling for the lift coefficient does not predict results for
the deflection amplitude normal to the flow direction that agree with experimental results.
The lateral amplitude predicted by the initial analysis is about one half its measured
value.

An attempt to understand this disappointing result is presented above. The
attempt is based on questioning the contemporary modeling of the lift coefficient. A
common assumption for the lift coefficient model is to express the lift force as
proportional to the stagnation pressure multiplied by the projected area, a lift coefficient
and a sinusoidal variation at the vortex shedding frequency (based on the usual, empirical
Strouhal Number formulation). Both von Karman’s conjecture of C; = 1.0 and measured
results indicate the lift coefficient should be about one. The initial analysis used this
formulation with the lift coefficient set equal to one.

For the drag model the physical description is that at the front of the cylinder is
close to the stagnation pressure while the rear of the cylinder has a stalled region whose
pressure is close to the free stream pressure. The lift force model has complications that
are not present in the drag model. A casual consideration indicates that, unlike an airfoil,
the symmetry of the lateral flow would not develop a lift force. In order to have a lift
force the stalled region at the back of the cylinder must move laterally as the vortices are
shed. The motion of the stalled region causes an oscillating lateral force on the cylinder.
The side of the cylinder opposing the moving stalled region has a surface pressure below
that of the free stream pressure. This reduced pressure can be estimated using the
potential flow solution for flow normal to a stationary circular cylinder. Let a be the
radius of the cylinder, r the generic radius and 6 the angle measured to the flow direction.
The free stream velocity is Vo and then the velocity components are,

Vi = fluid velocity component parallel to the flow

2
VO-(l—a—z-cos(ZG))
r

2
Vy = fluid velocity component normal to flow = -V, -a—2 : sin(2 : 6)
r

Consequently, the velocity at the cylinder surface and 8 = -7 is 2V, so the pressure
decrease from the free stream value is 2-p-V,>. Taking the free stream pressure on one

side of the cylinder and the (free stream pressure -2-p-V,>) on the other gives an upper

bound on the lift coefficient of Cp = 4. If the value of 8 (see Pages 3 & 4) is assumed to
be 4-m, the maximum value of C. would be expected to be about 2.8. This maximum

value is greater than the maximum measured value of < 1.2.
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Based on this discussion of the value of Cp, the failure of the prediction of
deflection amplitude normal to the flow direction may be an indication that the sinusoidal
forcing function may not be properly modeled. In order to investigate this notion the
sinusoidal forcing function was replaced by a square wave forcing function. The results
of this change are given by the two figures on Page 27. The lower figure shows that the
results of this second analysis are in better agreement with measurements than the initial
analysis.

A final observation is that there is considerable variation in measured lift forces
on a stationary cylinder; see Reference 2, Figure 3-16, Page 64. It may be that the
rigidity of the cylinder in the direction normal to the free stream direction could influence
the lift coefficient. If this is the case, force measurements should be made under resonant
conditions.

The results presented here on Page 27 for square wave excitation are the results
that are closer to measurements. This does not ensure that the true physical description of
the model is consistent with the square wave model. The square wave model can be
considered only to be a model that gives reasonable agreement with measurements that
are better than the sinusoidal excitation model.
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