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INTRODUCTION 
 
 This study “returns” to an important case of vortex-induced vibrations (VIV) that 
has been studied for over 60 years.  Den Hartog1 has described the phenomenon and cited 
several occurrences of practical importance.  A review of VIV studies up to 1994 is 
provided by Blevins2 in his comprehensive treatise.  The progress made in understanding 
the phenomena and documentation of specific cases is significant.  A commercial 
computer program3 is available for offshore marine risers. 
 
An elementary analysis useful for design is presented using observations cited in earlier 
work2.  The case for a straight, uniform, beam-column simply supported at each end and 
subjected to a uniform velocity fluid flow perpendicular to the beam-column axis is 
considered.  The axial effective force on the beam-column is constant and its cross 
section is for a standard circular tube.  The fluid surrounding the beam-column is infinite 
in extent.  Elementary, conventional equations and assumptions are used in the analysis 
of this case.  The case of most interest (resonance case) is when the frequency of 
oscillation of the vortex forces equals the fundamental natural frequency of the beam 
column.  The resonance case mode shape is a half sine wave.  The resonance case is the 
only one considered in this work.  The results of the analysis predict the motions both 
perpendicular and parallel to the flow direction.  Since all of the required initial 
conditions are not known a priori, the numerical integration of the equations is extended 
to 10 cycles which is adequate for determining the steady-state prediction.  
 
 The steady-state predictions obtained from the analysis may be more useful for 
some problems than one may initially recognize.  For example, marine risers are usually 
sufficiently long so that the vortex exciting frequency from ocean currents is many times 
(typically 30 to 50 times) the fundamental natural frequency of the riser.  The higher 
natural frequency mode shapes resemble sine waves so that each half wave in the riser 
mode shape may be approximated as a single, simply supported beam-column under 
constant tension.  Furthermore, for the higher modes the end conditions for the riser ends 
have little influence, except near the top and bottom of the riser, on the mode shapes and 
natural frequencies of the riser.  Another way of modeling such a problem is that every 
vortex exciting frequency is a natural frequency.  This view is further supported by the 
experimental observation that the vortex exciting frequencies will shift a bit so they can 
be synchronous with the riser natural frequency.  Since the tension varies with depth in a 
riser several predictions from the analysis presented here should be sufficient to establish 
the expected stress and displacement amplitude levels in the riser and the necessity for 
adding vibration suppressors to the riser (see Reference 2, Section 3.6). 
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NOMENCLATURE 
 
CD = constant drag coefficient for beam-column 
CL = constant lift coefficient caused by vortex shedding 
 D = uniform diameter of beam-column 

 

 EI = uniform bending stiffness of beam-column 
 FD = drag force/length on beam-column, a function of t and x 
 FL = lift force/length on beam-column, a function of t and x 
 FX = x-component of force/length on beam-column, a function of t and x 
 FY = y-component of force/length on beam-column, a function of t and x 
 L = length of beam-column between adjacent, simple supports 
 m = uniform mass/length for beam-column  
  = uniform added mass/length from fluid 
 S = Strouhal number 
TE = constant effective tension in beam-column 
 t = time, an independent variable 
 U = uniform flow velocity in the negative z direction, perpendicular to the rod axis 
 V = relative velocity magnitude of flow to strumming beam-column 

 Y =  

 y = coordinate to center of beam-column and lateral to flow, a function of t and x 
 = value of y at center of beam-column, a function of t 

 Z =  

 z = parallel to flow coordinate to center of beam-column, a function of t and x 
 = value of z at center of beam-column, a function of t 

 =  

  

 β = inclination of V to flow direction 
ζ = uniform structural damping parameter for beam-column 
µ = absolute viscosity of flowing fluid 
ν = kinematic viscosity of flowing fluid 
 ρ = mass density of flowing fluid 

 = circular frequency for FL 
 = fundamental, natural, circular frequency of submerged beam-column 
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REVIEW OF ELEMENTARY EQUATIONS AND ENSUING  MANIPULATIONS 
 
A. STROUHAL NUMBER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 The above sketch shows a generic cross section of a rod whose axis, the x-axis, is 
perpendicular to the page.  The rod is simply supported at each end and subjected to a 
uniform velocity of magnitude U in the negative z direction.  The absolute velocities,  
and , in the y and z directions are shown in the sketch.   
 
 
 
 
 
 
 
 

The sketch immediately above shows a) the relative fluid velocity vector, V, with 
respect to the rod at its inclination, β, to the z-axis, b) the resulting drag and lift forces FD 
and FL and c) the resolution of FD and FL into FY and FZ in the y and z directions.  Recall 
that, in practical cases, the maximum, single-peak amplitude of lateral motion, ymax, is 
roughly equal to the riser outer diameter, D.  Therefore the maximum lateral velocity is, 
approximately, the product of ymax and the circular strumming frequency, ω, as deduced 
by the Strouhal number4.  The ratio of this maximum lateral velocity to the free stream 
velocity, U, is, 
 

                  

 
Under typical circumstances the Strouhal number, S, is approximately equal to 0.2 and it 
is defined by, 
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so that,  
 

 

 
In addition, the experimentally observed value of ymax is usually equal, approximately, to 
D so that the above velocity ratio is equal, approximately, to one.  Consequently, the 
maximum value of the angle β shown in the second sketch above is too large to be treated 
as a linearized perturbation. 
 
 Careful measurements of the vortex exciting frequency have shown that the 
Strouhal number is a function of Reynolds’ number; see Reference 2, page 48, Figure 3.3.  
The Reynolds’ number, RE, is defined as, 
 

 

 
For the numerical scheme in this analysis, values of S = S(RE) from the figure below are 
used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 5 

 
B. DRAG AND LIFT FORCES 
 

Since β cannot be modeled as being small compared to one, the following 
expressions are appropriate,  
 

 > 0                   
 

                   

 

                   

 
so that, 
 

                   
 

                   
 
The values for FD and FL are not well established for cases where β varies rapidly with 
time.  It is common in such situations to neglect the influence of the rapid β variation on 
the lift and drag forces so that the steady-state form of the lift and drag equations is used.  
This analysis also neglects the dynamic β influence on the lift and drag forces so that, 
 

                       
 

             
 
so the equations for FY and FZ become, 
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C. ADDED MASS 

 
When the beam-column moves relative to the fluid, the fluid in its vicinity also 

moves.  The forces on the beam-column caused by the mass of the moving fluid must be 
taken into account if the lateral relative velocity changes.  The phenomenon is 
represented as a mass added to the beam-column mass.  The amount of this added mass is 
computed using a potential flow solution2, 5.  Since the origin of the vortex force 
excitation is caused by a stagnation region oscillating on the beam-column surface, it is 
clear that the flow has a turbulent region in contradiction to the laminar flow implied by 
the potential flow solution.  In spite of this shortcoming, the potential flow solution is 
normally used in other analyses and it will be used here.  The added mass per unit length 
for the potential flow solution equals the mass per unit length of the displaced fluid, 

 and this value is used here and denoted by . 
 



 7 

 
D. BEAM-COLUMN FUNDAMENTAL NATURAL FREQUENCY 

 
The equations for beam-column theory6 are a modification of the usual beam 

theory that includes the influences of an axial force applied to the beam.  The equations 
are used extensively to obtain axial, compressive buckling loads.  This study is 
restricted to axial tensile loads TE.   The classical method for finding natural 
frequencies for beam-columns neglects all external forces except rigid support forces as 
well as damping forces.  In this case the governing equation for motions in the x-y 
plane becomes (for the x-z plane replace y by z), 

 
 

 
where y = y(x,t), an overhead dot implies differentiation with respect to time, t, and the 
apostrophe symbol implies differentiation with respect to distance, x.  The boundary 
conditions for this problem are, 
 

 
 
That is, the lateral displacements and moments vanish at x = 0 and x = L. 
 
 The x dependence for the fundamental mode shape for the above equations is 
removed with the following half sine wave expression, 
 

 

 
so that  is the single peak lateral amplitude of vibration at .  When this 
expression is substituted into the above differential equation, the following equation 
results, 
 

 

 
Consequently, the beam-column fundamental natural frequency, ωn, is, 
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E. DEVELOPMENT OF GOVERNING EQUATIONS 

 
In Section D above the version of the governing beam-column equation for 

finding the natural frequency was given.  When the external fluid forces and beam-
column damping are included in those equations, the following equations result, 

 
               

 
  

 
Inclusion of FY and FZ in the equations causes them to be coupled.  The equations given 
in Section B are now used to express FY and FZ in terms of CD, CL, D, U, .  The 
expression for V is expanded through second order terms in  to obtain. 
 

 

 
   When the equations, 
 

              

 

              

 
are introduced, there is an explicit dependence of x in the equations.  This dependence is 
artificially removed by integrating the equations on x from x = 0 to x = L and setting the 
results to zero.  This approximation has an averaging influence on the equations.  After 
these steps the first two equations of this section become, 
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The symmetry of this problem ensures that the mean value of  is zero.  In order to 
adjust the displacement  to one that has a mean value of zero the following change of 
variable to  is introduced, 
 

                

 
 
With this alteration the governing equations become, 
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NUMERICAL SCHEME FOR SOLVING GOVERNING EQUATIONS 
 

The last two equations of Section E are transformed to dimensionless variables 
before performing a numerical integration.  The new, dimensionless variables are defined 
as follows, 

 

 

 

 

 
 

 
Also define the following notation, 
 

 
 

 

 

 

 
These changes convert the governing equations to the following form, 
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The left-hand side of the first equation indicates the fundamental natural frequency, , 
is given by, 
 

 

 
 Since only the resonant case is being considered and the excitation is from the 
vortex shedding, the Strouhal number also determines the natural frequency as, 
 

 

 
In order for the last two equations to be consistent, the value of  from the second  
equation is used to determine the value of L in  so that, 
 

 

 
And the governing equations become, 
 

 

 

 

 
 
 
Note that the steady-state solution for the dimensionless displacements may be found 

when FAC, ζ, , CD and CL are specified.  The method used here for finding the 

steady-state solution is to estimate a set of initial conditions (since the actual values are 
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unknown) and numerically integrate them until the displacements become essentially 
cyclic.  The cyclic behavior is the steady-state solution.  For the illustrative problems 
presented below the steady-state is reached in less than 10 cycles for Y.  The estimates 
for the initial conditions are, 
 

At τ = 0 Y = 0,     Z =   Z,τ  = 0 
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ILLUSTRATIVE EXAMPLE 
 

INPUT DATA FOR PROGRAM VIVN2: 
 
EI = bending stiffness, lbf-in2    = 16.1E6 
m = mass per unit length, lbf-sec2/in2   = 0.001 
TE = effective tensile force, lbf    = 500. 
D = diameter, in      = 2.00 
U = fluid velocity, in/sec    = 24.0 
ρ = fluid mass density, lbf-sec2/in4   = 0.960E-4 
ν = fluid kinematic viscosity, in2/sec   = 0.00160 
CD = fluid drag coefficient    = 1.20 
CL = fluid lift coefficient     = 1.00 
ζ = structural damping coefficient   = 0.00 
 
 
INTERMEDIATE OUTPUT DATA FROM PROGRAM VIVN2 
 
ωn = fundamental, circular natural frequency, rad/sec = 14.36 
FREQ = frequency, cyc/sec     = 2.285 
L = length of half sine wave, in    = 293.6 
RE = Reynolds’ number     = 0.3000E5 
STN = Strouhal number     = 0.1905 

ROM =       = 0.3209 

ESD =       = 1.302 

FAC =       = 1.302 
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 The illustrative example reported above is for a steel tube with OD = 2.0 in and 
ID = 1.5 in, under an effective tension of 500 lbf submerged in water at 65 oF and 
flowing at 2 ft/sec.  The standard value of CD = 1.2 was used while the speculated value 
of CL = 1.0 was chosen.  The first illustrative example figure above shows the 
fundamental frequency of vibration for the lateral motion is 2.285 cyc/sec while the 
fundamental frequency of vibration for the axial motion is 4.57 cyc/sec.  The amplitude 
of lateral motion is 1.4 inches which is 70 % of the OD. 
 

 Reference 2, Page 71, Table 3-2 gives results of earlier analyses for  at 

resonance.  For this illustrative case the applicable results are, 
 

Wake Oscillator Model7   = 1.576 

Griffen and Ramberg Model8   = 1.490 

Sarpkaya Model9    = 1.509 

 

All of these predictions are more than twice the prediction of  = 0.70 from the 

illustrative case.  The current analysis has a number of assumptions that make its 
predictions subject to error.  In addition, it is the only analysis using CL = 1.0.  An 

increase in the value of CL or a decrease in the value of CD will increase .  Since the 

value of CD has been established experimentally within close limits for a Reynolds’ 
number of 30,000, it is not likely to be the primary source of error.  An influence that is 
not considered in this work is that the drag coefficient can be increased substantially 
owing to the laterally induced motion, Reference 2, Section 3.3.  Since an attempt to 
account for this phenomenon would worsen the spread in the current results and the three 
given above, it is not pursued.  If the value of CD = 1.2 is accepted, then the value of CL 
can be adjusted to match the above results.  When this procedure is followed, CL must be 
greater than 2.0 to match the three results above.  This high value for CL seems to the 
author to be inconsistent with the usual explanation for the lift phenomenon for the 
problem.  The usual explanation is that a region of stagnation moves from side to side of 
the beam-column as the lateral motion proceeds.  The region of stagnation should have, 
approximately, the free stream pressure. 
 The second figure for the illustrative problem is a Lissajous figure of the y and z 
directions motion.  This is the type of figure that is often measured for the motion; see 
Reference 2, Page 94, Figure 3-31.  This figure shows that the period of axial motion is 
half that of the lateral motion as predicted by Program VIVN2. 
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SOME INFLUENCES OF PARAMETER VARIATIONS 
 
 In this section the illustrative problem in Section F is used as a base case and one 
parameter is varied to obtain its influence on the solution.  This procedure is followed for 
each of the following parameters with their values for the base case given below, 
 

  = 0.3209 

 
CD  = 1.20 
  
CL  = 1.00 
 
ζ  = 0.00 
 
 In the figures below, ΔZ is the maximum variation of Z in the steady-state while 
ZMEAN is the mean value of Z in the steady-state.  Ymax and ΔZ/2 are single peak 
amplitudes and ybar = .  All results in this section are for steady state conditions. 
 

1.    variation 
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2.   CD variation 
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3. CL variation 
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4. ζ variation 
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SOME OBSERVATIONS 
 

1. Vortex-induced vibration for a very elementary case is modeled using forces 
on a simply supported beam-column subjected to a uniform fluid flow normal 
to the beam-column axis.  The forces are determined using the Morison 
equation10.  The analysis includes second order terms in the velocity 
components.  Beam-column displacements both parallel and perpendicular to 
the flow direction are included. 

 
2. The results are qualitatively OK.  They should be helpful in designing 

experiments and estimating influences of parameter changes. 
 

 
3. The predictions for the lateral motion amplitudes are disappointing when 

compared to reported experimental values.  The predictions presented above 
show that the lateral motion amplitudes are strongly dependent on the lift 
coefficient.  In Reference 2, Figure 3-16, Page 64 the values of the 
experimental lift coefficients are all less than 1.4 with an average closer to 0.8.  
The illustrative example used CL = 1.0 and predicts a lateral motion amplitude 
less than one half of the results cited on Page 14 above.  The figure on Page 
20 shows that this analysis requires a value for CL of about 2.0 to match the 
Page 14 results. 

 
4. In order to evaluate the importance of including the axial motion of the beam-

column in the analysis, the above formulation was altered to set the axial 
displacement of the beam-column to a constant in the steady-state.  The same 
input data to this modified program was used that was used for the top figure 
on Page 14 above.  The lateral displacement amplitude as a function of 
dimensionless time is shown below.  Comparison of this figure with the top 
figure on Page 14 shows that the steady-state solutions are virtually the same. 
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 The governing equation for the above figure is, 
 

 

 
At resonant conditions in the Harmonic Model described in Reference 2, 

Section 3.5.1, pp. 61-67, this equation is linearized and CD is set to zero.  The 
result is, 
 

 

 
Note that the amplitude is inversely proportional to ζ.  The amplitude is predicted 
to be infinite at resonance when the beam-column damping is set to zero. This 
result is not useful in the current study and it demonstrates that non-linear 
influences must be included in order to have a useful analysis. 
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5. The vortex shedding phenomenon has been studied experimentally.  The vortex at 
resonance normally separates from the upper side of the cylinder when the peak 
lateral displacement is reached and the new vortex immediately starts forming on 
the lower side of the cylinder.  In many resonant analyses the lateral force 
imposed on the cylinder by the fluid is assumed to be sinusoidal in time.  It seems 
to the author that the sinusoidal assumption could legitimately be questioned.  As 
a result, the calculation procedure described above (starting on page 10) was 
altered to change the sinusoidal wave to a square wave.  The salient results are 
shown in the figures below. 
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 The above figure shows that the square wave forcing function yields predictions 
that are more in line with published experimental results than the sinusoidal forcing 
function. 
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CONCLUSIONS 
 
 The initial analysis presented above shows that an elementary examination of a 
vortex-induced vibration problem using a long beam-column, classical fluid mechanics 
methods and contemporary modeling for the lift coefficient does not predict results for 
the deflection amplitude normal to the flow direction that agree with experimental results.  
The lateral amplitude predicted by the initial analysis is about one half its measured 
value. 
 
 An attempt to understand this disappointing result is presented above.  The 
attempt is based on questioning the contemporary modeling of the lift coefficient.  A 
common assumption for the lift coefficient model is to express the lift force as 
proportional to the stagnation pressure multiplied by the projected area, a lift coefficient 
and a sinusoidal variation at the vortex shedding frequency (based on the usual, empirical 
Strouhal Number formulation).  Both von Karman’s conjecture of CL = 1.0 and measured 
results indicate the lift coefficient should be about one.  The initial analysis used this 
formulation with the lift coefficient set equal to one. 
 
 For the drag model the physical description is that at the front of the cylinder is 
close to the stagnation pressure while the rear of the cylinder has a stalled region whose 
pressure is close to the free stream pressure.  The lift force model has complications that 
are not present in the drag model.  A casual consideration indicates that, unlike an airfoil, 
the symmetry of the lateral flow would not develop a lift force.  In order to have a lift 
force the stalled region at the back of the cylinder must move laterally as the vortices are 
shed.  The motion of the stalled region causes an oscillating lateral force on the cylinder.  
The side of the cylinder opposing the moving stalled region has a surface pressure below 
that of the free stream pressure.  This reduced pressure can be estimated using the 
potential flow solution for flow normal to a stationary circular cylinder.  Let a be the 
radius of the cylinder, r the generic radius and θ the angle measured to the flow direction.  
The free stream velocity is VO and then the velocity components are, 
 

Vx = fluid velocity component parallel to the flow =  

 

Vy = fluid velocity component normal to flow  =  

 
Consequently, the velocity at the cylinder surface and θ =  is  so the pressure 
decrease from the free stream value is .  Taking the free stream pressure on one 
side of the cylinder and the (free stream pressure - ) on the other gives an upper 
bound on the lift coefficient of CL = 4.  If the value of β (see Pages 3 & 4) is assumed to 
be , the maximum value of CL would be expected to be about 2.8.  This maximum 
value is greater than the maximum measured value of < 1.2. 
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 Based on this discussion of the value of CL, the failure of the prediction of 
deflection amplitude normal to the flow direction may be an indication that the sinusoidal 
forcing function may not be properly modeled.  In order to investigate this notion the 
sinusoidal forcing function was replaced by a square wave forcing function.  The results 
of this change are given by the two figures on Page 27.  The lower figure shows that the 
results of this second analysis are in better agreement with measurements than the initial 
analysis. 
 
 A final observation is that there is considerable variation in measured lift forces 
on a stationary cylinder; see Reference 2, Figure 3-16, Page 64.  It may be that the 
rigidity of the cylinder in the direction normal to the free stream direction could influence 
the lift coefficient.  If this is the case, force measurements should be made under resonant 
conditions. 
 
 The results presented here on Page 27 for square wave excitation are the results 
that are closer to measurements.  This does not ensure that the true physical description of 
the model is consistent with the square wave model.  The square wave model can be 
considered only to be a model that gives reasonable agreement with measurements that 
are better than the sinusoidal excitation model. 
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