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SOME FORMULATIONS COMMONLY USED IN CONTINUUM MECHANICS 

by Paul Paslay 
 
I  INTRODUCTION 
 
 There are two essential components associated with the development of 
constitutive equations that mathematically represent real materials.  The first component 
is the proper mathematical formulation of the quantities appearing in the constitutive 
equations.  There are physical constraints that are common to all materials that dictate the 
way these quantities are defined and they may be expressed mathematically.  The other 
component in the development is more in the realm of physics as it is the underlying 
understanding of the characteristics of a particular material.  This work is an attempt to 
address the considerations associated with the first component of the development of 
appropriate constitutive equations.  The presentation is restricted to Cartesian spatial and 
reference coordinate systems so the distinction between covariant and contravariant 
components is not made.  In addition, only minimal references to mathematical 
restrictions on theorems, such as continuity requirements, are made in the text. 
 
 After some introductory material the concept of motion is described and the topic 
of strain is presented in detail.  Only two strain definitions are considered in this work.  
One is referred to the spatial coordinate system while the other is referred to the reference 
coordinate system.  The reader should note that for small strains neither of the tensor 
strains considered reduce to the usual engineering definition of strain owing to a factor of 
one half on the tensor shear strains.  Following the coverage of strain the issue of strain 
rate is presented. 
 
 The topic of stress is covered next.  The restraints on the stress tensor imposed by 
Newton’s First and Second Laws are derived.  Although stress is closely associated with 
a spatial coordinate system, the formulation for stress is presented in both the spatial and 
reference coordinates.  The coverage of stress is followed by a presentation of four 
definitions of stress rate.  The stress rate presentation is rather detailed as the author feels 
this topic is often not covered or is poorly covered in some textbooks in Continuum 
Mechanics. 
 
 The final section considers the relationship of constitutive equations to Classical 
Thermodynamics.  The section presents a set of elementary constitutive equations for 
several materials in thermal equilibrium.  Expressions are derived for the internal energy, 
heat flow rate and entropy production rate.  These derivations are based on the 
requirement that a material in thermal equilibrium must have entropy that depends only 
on the state of the material. 
 
 The appendix is a review of the usual, elementary, Classical Thermodynamics 
formulation. 
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II  PRELIMINARY CONSIDERATIONS 
 
  The change of configuration of a material body is described in this work using a 
reference and a current set of coordinates.  Both of these coordinate systems are three-
dimensional, Cartesian, right-handed coordinate systems.  Only the current set of 
coordinates is considered in this section. 
 
 The current set of coordinates is the one in which evaluation of the quantities 
studied are made.  It is a spatial coordinate system in an inertial space, one without 
acceleration.  Each set of coordinates x1, x2, and x3 (referred to as x) locate a fixed point 
in the inertial space, i.e. .  The distance, ds, between two 
points separated by the differential amount dx, i.e.  is, 
 

  
             
The base vectors  (in most texts called ) relate the vector  
joining points x and x+dx to dx as, 
 

        
 
 In the following, unless otherwise specified, summation is implied by repeated, 
subscripted, letter (not numbered) indices in a term so the above two equations may be 
written as, 
 

                
 

           
 
 Any vector, , may be expressed in terms of its components, a1, a2 and a3 as, 
 
.            
 
 When a second inertial, spatial coordinate system with base vectors,  is 
introduced the vector may be expressed in either coordinate system as, 
 
.   
         
The dot product of this equation with each of the base vectors leads to the following 
results, 
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where, 
 

 

 
The matrices associated with the coefficients, , are both orthogonal matrices so 
that, 
 

   and the determinant of [c] = +1 
 
For the differential length vector dx, 
 

 
 
so that 
 

 

 
The determinant of a matrix formed from aij is denoted as  and may be 

evaluated using, 
 

 

 
where eijk is the Levi-Chivita symbol defined by, 
 
e123 = e312 = e231 = +1    and    e132 = e321 = e213 = -1 
 
otherwise eijk = 0 
 

The cross product of two vectors  may be determined by, 
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and the volume, VO, determined by the three vectors , is, 
 

 
 
where, 
 

 

 
 
Also note that, 
 

 

 
and recall that, 
 
eijk = -ejik     eijk = -eikj     eijk = -ekji   
 
 The coordinate transformations above show that these are tensor transformations.  
Consider a second rank tensor ξij (like stress or strain) that undergoes a change of 
coordinates to obtain .  The transformation is given by, 
 

 
 
If i = j then, 
 

 
  
where δij is the Kronecker Delta (δij = 1  if i = j; = 0 otherwise). .  This last equation 
shows that the sum of the diagonal terms (the trace) of the [ξ] matrix is unchanged by the 
change of coordinates.  Therefore ξii is called an invariant of ξij.  It is straightforward to 
show other combinations that are invariant in a change of coordinates.  The three simplest 
for a second rank tensor are given below. 
 
I1 = ξii  = Tr[ξ]  
 
I2 =  = Tr  
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I3 =  =Tr  
 
The well known Cayley-Hamilton Theorem delimits the number of independent 
invariants.  This theorem states that a square matrix satisfies its characteristic equation.  
The characteristic equation for [ξ] is, 
 

 
 
or, 
 

 
and upon applying the theorem and introducing I1, I2 and I3, 
 

 
 
Therefore, all invariants of the form Tr  where n is an integer = 3 may be expressed 
in terms of I1, I2 and I3.  Consequently there are only three independent invariants of this 
form.  A second set of invariants that are commonly used are K1, K2 and K3 and they are 
related to I1, I2 and I3 as follows, 
 

 
 

 
 

 
 
 Gauss’ theorem of the gradient is used in the following developments.  In terms of 
the notation used here it is, 
 

 

 
where f is a function of position in the volume and  is the outward, normal, unit length 
vector on the surface.  
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III  STRAIN 
 
  III.1  DESCRIPTION OF MOTION 
 
 In preparation for defining strain a rigid body motion is defined first.  For a rigid 
body motion the straight line distance between any two material points in the same body 
is unchanged by the motion.  Any other motion has strain occurring in at least part of the 
body. 
 
 In this work two distinct coordinate systems are used to define motion.  They are, 
 

1. The material coordinate system X with components Xα that define constant mass 
material points fixed in the body and have base vectors .  These material points 
are referred to as particles in the following development.  This is referred to as the 
Lagrangian description. 

 
2. The spatial coordinate system x with components xi that define points in an 

inertial space and have base vectors . 
 
The sketch below illustrates the systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to simplify subsequent work the initial values for x are assumed to equal 
the reference coordinates X.  That is, for the particle X, 
 
Initial value of x1 before motion occurs = X1  
Initial value of x2 before motion occurs = X2  
Initial value of x3 before motion occurs = X3  
 
and in this initial state the strain in the body is zero everywhere in the body.  When 
motion of the body occurs, the particle X has a change of its spatial coordinates, x.  In 
this section the strain is determined for the change in configuration from the initial state 
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to the current configuration defined to be at the end of the motion.  This change is given 
by X(x) in the current configuration.  In order to help make the development tractable 
subscripts in the current configuration are Latin symbols while those in the material 
coordinates are Greek symbols.  Consider two particles X and X + dX separated by a 
differential distance, dS, in the initial, reference configuration.  The relation of dS to dX 
is given by, 
 

 
 
and the vector joining X and X + dX is given by, 
 

 
 
where  are the base vectors associated with the Xα coordinates. 
 
 As a result of the motion the distance between X and X + dX has changed from its 
initial configuration value.  This changed distance may be found using the X(x) 
relationship.  Note that the relationship may always be inverted to determine x(X) since 
contacting particles cannot be allowed to come out of contact nor can we allow two 
particles to occupy the same spatial point.  This is a fundamental concept when 
describing a classical continuous body.  As a result, 
 

  

 

 

 
and 
 

 

 

 

 
The equations above show that the two matrices for the partial derivatives are inverses of 
each other.  
 
 A differential length vector  in the reference configuration becomes the 

vector  in the current configuration where, 
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This vector is referred to as the Chapman distorted base vector in this work. 
 
 Strain that occurs in a body going from the reference configuration to the current 
configuration may be evaluated mathematically for a point by determining, 
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III.2  SPATIAL STRAIN TENSOR 
 
  III.2.1  FORMULATION 
 
The first strain tensor to be considered is referred to as the Almansi-Hamel or spatial 
strain (eij).  It is deduced from the last equation in Section III.1 and 
 

 

 
to obtain, 
 

 

 
so that, 
 

 

 
Note that eij is symmetric.  The expression  will not vanish for all, arbitrary, 
non-zero values of dx unless every component of eij vanishes.  Consequently, a rigid 
body motion from the reference configuration to the current configuration will have all 
the eij components vanish.  When all the components of eij do not vanish, a rigid body 
motion between the reference and current configuration is not possible.  Therefore, eij is a 
physically acceptable definition of strain.  In matrix notation, 
 

 

 
 Since [eij] is real and symmetric, it is always possible to find a change of spatial 
coordinates that transform [eij] to the form, 
 

 

 
and eI, eII and eIII are called the principal spatial strains.  The axes of the new spatial 
coordinates are called the principal directions.   
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An element aligned with the ith principle direction that was one unit long in the 
reference configuration has length 1 + δi in the deformed configuration and, 
 

 

 
On physical grounds,  so that  and this range applies to all the 
principal strains eI, eII and eIII.  δi is referred to as a principal spatial extension. 
 
  III.2.2  ILLUSTRATIVE EXAMPLES 
 
Uniaxial Strain: 
 

    or       so that    

 
Since the off-diagonal terms .in [eij] vanish, the three principal spatial strains are 

, 0 and 0.  A graphical representation of this uniform strain is shown in the 

sketch of rectangular parallelepiped shapes below. 
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Isotropic Strain: 
 

    or       so that    

 
Since the off-diagonal terms .in [eij] vanish, the three principal spatial strains 

are ,  and .  The sketch below of the transparent cubes 

illustrates this uniform expansion with the current configuration shown by the solid, red 
line.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear Strain: 
 

   or      so that    

 
Note the one-half factor on the off-diagonal terms.  For the engineering strains defined in 
virtually all Strength of Materials textbooks the factor is one rather than one half.  The 
above form with the one half is the tensor definition of strain.  In addition, the presence 
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of non-vanishing off-diagonal terms indicates the spatial coordinate system is not aligned 
with the principal directions.  The characteristic equation for the [eij] matrix is, 
 

 
 
and its roots are the principal strains giving, 
 

 

 
and the corresponding principal directions are, 
 

 

 
The inclination, γ, of the  vector to the  vector is, 
 

 
 
This shearing motion is illustrated in the sketch below.  The red solid line shows the 
reference configuration. 
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III.3  MATERIAL STRAIN TENSOR 
 
  III.3.1  FORMULATION 
 
 A second strain definition is also based on, 
 

 
 
In this case the Green-St.Venant or material strain tensor, Eαβ, is found by combining this 
equation with, 
 

 

 
to obtain, 
 

 

 
From this last equation, an appropriate measure of strain is seen to be, 

 

 

 
Note that Eαβ is symmetric and that in matrix notation, 
 

 

 
so that principal material strain values and directions may be found.  An element parallel 
to the Kth principal direction of unit length in the reference configuration has a length of 1 
+ ΔK after straining and the corresponding principal strain, EK is, 
 

 or  
 
Since, , 
 

 
 
and this is true for all the principal strains.  ΔK is called a principal material extension. 
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  III.3.2  ILLUSTRATIVE EXAMPLES 
 
Uniaxial Strain: 
 

    or       so that    

 

Since the off-diagonal terms .in [eij] vanish, the principal spatial strains are , 

0 and 0.  A graphical representation of this uniform strain is shown in the sketch of 
rectangular parallelepiped shapes below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Isotropic Strain: 
 

    or       so that    
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Since the off-diagonal terms .in [Eαβ] vanish, the principal spatial strains are , 
 and .  The sketch below of the transparent cubes illustrates this 

uniform expansion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear Strain: 
 

   or      so that    

 
Note once more the one-half factor on the off-diagonal terms.  For the engineering strains 
defined in virtually all Strength of Materials textbooks the factor is one rather than one 
half.  In addition, the presence of non-vanishing off-diagonal terms indicates the 
reference coordinate system is not aligned with the principal directions.  The 
characteristic equation for the [Eαβ] matrix is, 
 

 
 
and its roots are the principal strains giving, 
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and the corresponding principal directions are, 
 

 

 
The inclination, Γ, of the  vector to the  vector is given by, 
 

 
 
This shearing motion is illustrated in the sketch below 
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III.4  COMPARISON OF SPATIAL AND MATERIAL STRAINS 
 
 The formal relations between [Eαβ] and [eij] are, 
 

 

 
and 
 

 

 
 The case of uniaxial strain in the x1 direction determined the E11 and e11 strains as, 
 

 

 
where K is the uniaxial straining parameter.  The spatial and material strains are 
compared for the uniaxial case in the plot below.  In addition the usual engineering strain 
is shown. 
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The studies of shearing motion for the spatial and materials determined two 
angles that are, 
 
γ = inclination of first principal direction for the spatial strains to the x1 axis 
Γ = inclination of first principal direction for the material strains to the x1 axis 
 
The curve below shows how each angle changes as the shearing parameter, M, varies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is no shear when M = 0.  Note that for a small amount of shear (M << 1) both 
angles are close to 45o.  The angle for the usual small strain theory is 45o.  Relationships 
between γ and Γ are,   
 

 
 
 In the general case of straining the principal strain magnitudes and directions can 
be used to identify orientations that transform during straining from an initial rectangular 
parallelepiped to another rectangular parallelepiped.  This result can be anticipated on 
physical grounds as the initial configuration and the final configuration in the principal 
strain directions both have vanishing shear strains.  The sketches below show the results. 
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 The above figure demonstrates that, 
 

 
 
so that, 
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Consequently, when one set of principal strains is known, the other set can be determined 
using the above equations.  Note that the first two equations of this section show that, in 
general, when either [E] or [e] is specified, the other strain cannot be found.   
 
 Recall the definitions of the principal extensions,  
 

   

 
When these definitions are introduced into the above equations relating the spatial and 
material principal strains there results, 
 

 
 
 Finally, the results in this section show, when the components of either [E] or [e] 
are all << 1, the spatial and material strains are essentially the same.  In this case, the 
normal strains are approximately equal to the normal engineering strains while there is a 
one-half factor on the engineering shear strains.  Because of the one-half factor the 
engineering strain is not, strictly speaking, a tensor. 
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III.5  TIME DERIVATIVES 
 
 Experiments on certain real materials demonstrate that under constant load the 
material response is to have a continually increasing strain.  The most common materials 
exhibiting this behavior are viscous fluids.  Since one of the goals of Continuum 
Mechanics is to develop mathematical means describing and predicting the behavior of 
real materials a means is needed to describe fluid-like behavior.  The simplest physical 
concept for a fluid is that the response of the material to a constant load is a constant time 
rate of change of strain.  This section considers the form that time derivatives should have 
to properly describe real materials.  Studies in Continuum Mechanics frequently go 
beyond the notion of a strain rate but the considerations for time differentiation are the 
same as the ones presented here. 
 
 An underlying concept in Continuum Mechanics is that the kinematic behavior of 
a particle of material is completely controlled by the force, temperature, etc. in the 
immediate neighborhood of the particle.  This concept leads to constitutive equations that 
apply to material particles.  When the time rate of change of configuration is required to 
describe a particular type of material, the time derivative must apply to a particle, not a 
fixed spatial location.  The remainder of this section presents formulations for finding 
time derivatives that apply for a particle. 
 
 Start by considering a function, f(X, x, t) representing a time dependent change of 

configuration where t is time and define the time derivative, , as, 

 

  

 
This derivative is sometimes called the substantial derivative.  In the special case where 
f(X, x, t) = x(X,t) this definition yields, 
 

 

 
The components of  are the velocity components of the particle identified by the 
reference coordinate X.  The definition may now be written as, 
 

 

 
This derivative follows the usual chain rule of differentiation so that when. 
 

  then    
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and when, 
 

  then    

 
The chain rule for differentiation can be used to derive useful results as follows.  Starting 
with, 
 

  

 
Take the derivative with respect to time to obtain, 
 

 

 

Now multiply by  with the implied summation to obtain, 

 

 

 

or multiply by  with the implied summation to obtain, 

 

 

 
Another result that will be useful later is the time derivative of a differential 

length vector, , fixed to the material.  The material velocity at the origin of this 

vector is  while the velocity at the tip of the vector is  so that, 

 

 
or, 
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III.6  STRAIN RATE 
 
 Recall the measures of change of distance between two configurations, 
 

 
 
The case of time dependent motion is considered in this section so the strains are 
functions of time.  If at any time the time rate of change of ds2 – dS2 vanishes for an 
arbitrary dx then the strain rate components based on the spatial coordinates all vanish.  
On the other hand, if the time rate of change of ds2 – dS2 vanishes for arbitrary dX then 
the strain rate components based on the reference coordinates all vanish.  Since, 
 

 

 

and  has a bounded inverse the two definitions are physically the same for defining 

when the strain rate equals zero.  However, the two formulations lead to different 
measures for non-vanishing strain rates.  This is demonstrated below. 
 
III.6.1  STRAIN RATE BASED ON REFERENCE COORDINATES 
 
 Starting with, 
 

 
 
A permissible strain rate formulation is found from either of the forms below, 
 

 

 
so that strain rate may be determined using, 
 

 

 
III.6.2  STRAIN RATE BASED ON SPATIAL COORDINATES 
 
 Starting with, 
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A permissible strain rate definition can be deduced from, 
 

 

 
However, this is a rather cumbersome equation to investigate.  Fortunately, there is a 
simpler way to proceed to the desired result.  Since dS does not change with time, 
 

 

 
The reason for writing this equation with a Kronecker Delta is that the differentiation 
yields a summation and the contributions from i and j must be kept separate. as the 
expressions for the strain are coefficients in the summation.  This is insured if the indices 
of the Kronecker delta are kept distinct.  Now recalling the result that, 
 

 

 
the above differentiation becomes, 
 

 

 
This last equation shows that dij is an acceptable definition for strain rate.  This tensor is 
called the deformation rate tensor and it determines the instantaneous time rate of change 
of strain referred to the spatial coordinates.  The individual components of dij are given 
by, 
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 Note that dij is independent of the reference configuration while  is not.  

Therefore, unlike the strains, the principal values of dij and  cannot be related one 

to the other. 
 
III.6.3  ILLUSTRATIVE EXAMPLES FOR STRAIN RATE  
 
Uniaxial Strain: 
 

    or       so that    

 

 

 

   

 
 
Isotropic Strain: 
 

    or       so that    
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Shear Strain: 
 

   or    

 

so that    

 

 

 
The principal values are, 
 

 

 
The principal directions are, 
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where, 
 

 
 

   [d] =  

 
The principal values of [d] are, 
 

 

 
The principal directions for [d] are, 
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III.7  COMPATIBILITY CONDITIONS 
 
 In preceding developments in this work there has been a tacit assumption that an 
acceptable motion has been considered.  In some analyses of mechanical behavior a 
solution is initiated by finding a solution for stresses that satisfies force equilibrium (e.g. 
– the Airy Stress Function) and then the constitutive equations are used to find the strain 
distribution.  Since the strain tensor has nine components and the motion generating these 
strains is based on three displacement functions, there must be restrictions on the strain 
distribution in a continuous body.  The equations representing these restrictions are 
referred to as compatibility conditions.  As the derivation of these conditions is a purely 
mathematical matter, only a brief description is presented in this work.  A comprehensive 
presentation of the mathematical formulation is given in P. G. Bergmann’s Introduction 
to the Theory of Relativity (Prentice-Hall, 1942). 
 
 The base vectors  and  are two sets of mutually perpendicular unit length 
vectors so that, 
 

 

 
and, 
 

 

 
The Chapman distorted base vectors, 
 

 

 
describe the distorted state in terms of the current configuration.  That is,  in the 

reference configuration becomes  in the current configuration.  These base 

vectors are in general not mutually perpendicular or of unit length so that we define Gαβ 

as follows, 
 

 
 

The tensor Gαβ is called the metric for the space and, 
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Comparison with, 
 

 

 
shows that, 
 

 
 
Therefore, the metric for the distorted reference configuration is equal to the undistorted 
reference configuration metric plus two times the material strain.  A similar scheme may 
be used to find the metric, φij, for the spatial configuration before the motion occurs. 
 

  

 
Comparison with, 
 

 

 
shows that, 
 

 
 

 The formulations of the metrics φij and Gαβ are now used to develop the 

compatibility conditions.  In elementary relativity theory a space is defined by its metric, 
gij, which is a function of the coordinates xi.  The relativity derivations are concerned 

with non-Euclidian spaces while the objective here is to show that φij and Gαβ are 

metrics in Euclidian spaces.  Requirements placed on the motion earlier show that the 

metrics φij and Gαβ are positive definite so, from relativity results, the only remaining 

condition for the spaces to be Euclidian is that the spaces be integrable.  
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 Consider a generic vector that has a fixed direction and length.  Move this vector 
along an arbitrary closed path in the space being investigated.  The line integral of the 
vector along this path must end with the same vector it started with in order for the space 
to be integratable.  The integral whose components must vanish can be expressed in 
terms of the metric, gij, and the integral is proportional to the Riemann-Christoffel tensor, 
Rsmij,  The Riemann-Christoffel tensor may be expressed in terms of the metric, gij, and 
its inverse, , as follows, 
 

 

 
Note that for a Cartesian coordinate system all the components of Rsmij vanish as the 
metric, [g], is the identity matrix, [I].  In general, there are only six independent 
components of Rsmij and they are indicated in the table below. 
 
       COMPONENTS OF THE RIEMANN-CHRISTOFFEL TENSOR 

 

i, j = 11 12 13 21 22 23 31 32 33 
   
 
   ms          

11 0 0 0 0 0 0 0 0 0 

12 0 A D -A 0 E -D -E 0 

13 0 D B -D 0 F -B -F 0 

21 0 -A -D A 0 -E D E 0 

22 0 0 0 0 0 0 0 0 0 

23 0 E F -E 0 C -F -C 0 

31 0 -D -B D 0 -F B F 0 

32 0 -E -F E 0 -C F C 0 

33 0 0 0 0 0 0 0 0 0 
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Where, 
 
A = R1212  
B = R1313 
C = R2323  
D = R1213  
E = R1223  
F = R1323  
 

When the metrics φij and Gαβ are substituted into Rsmij , differential equations for Eαβ and 

eij are obtained and these are the compatibility conditions. 
 

 In the case of strain rate the time rate of change of the metrics φij and Gαβ must 

vanish.  For example, 
 

 

 
and, 
 

 
 
 To summarize, the necessary and sufficient conditions that a space be Euclidian 
are that the six independent components of the Riemann-Christoffel tensor vanish 
throughout the space and that the metric of the space at every point be positive definite.  
Obviously, the compatibility conditions can be rather complex differential equations. 
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IV  STRESS 
 
  IV.1  PRELIMINARY CONSIDERATIONS 
 
 The definition of stress is intimately tied to Newton’s linear and angular 
momentum laws.  In this work volume and surface integrals are used so this section 
presents formulations for differential volume and differential surface elements.  These 
quantities are needed for both the reference and the current configurations as well as their 
time derivatives.   
 
 The sketch below shows a differential length element that is fixed to the material.  
The element is from a line on which Xα (α = 1, 2 or 3) is changing while the two other 
coordinates are not changing. 
 
 
 
 
 
 
 
 
 
 
 
 
The vector  joining points P and Q may be determined in the reference configuration 
and in the current configuration as, 
 

 

 
where  is the Chapman distorted base vector given by, 
 

 

 

The metric for the Chapman distorted base vectors is Gαβ where, 
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and, 
 

 

 
Consequently, for the differential volumes, dVOL, associated with the reference and 
current coordinate systems are, 
 

 
 

 
 
Recall from Linear Algebra, that, 
 

 

 
to find, 
 

 

 
It is clear that the ratio of the current volume to the reference volume from this equation 
applies to any differential volume. 
 
 The time rate of change of the current differential volume may be obtained using 
the last equation and, 
 

 

 
The steps are, 
 



 37 

 

 
Note the summations on the j index can be eliminated by recalling that the determinant of 
a matrix vanishes when two rows or two columns are identical.  Therefore, 
 

 

 
since, 
 

 

 
there results, 
 

 

 
 For the determination of expressions for differential elements of surface area take 
two non-parallel vectors like , defined at the beginning of this section, emanating from 
the same point.  Denote these vectors  and then define, 
 

 

 
The differential area defined by these vectors is  and it is equal to  so that, 
 

 
 
so that the α component is, 
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In the current configuration, using the Chapman distorted base vectors, the differential 
area is derived as follows, 
 

 

 
and denoting the area component in the current configuration as  results in, 
 

 

 
 The time rate of change of  is found using, 
 

 

 
and the last equation as follows, 
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Note that the step between the third and fourth lines in the above equation uses the fact 
that the determinate of a matrix with a repeated row or column vanishes. 
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  IV.2  SOME CONCEPTS FROM MECHANICS 
 
 In mechanics of deformable bodies a “physical” particle has special meaning.  It 
is an infinitesimal size volume, dVP, that has a density of ρ (> 0).  The particle has a 
differential mass, dM, equal to that remains the same when the configuration 
changes.  A body is defined here as a region, R, (includes boundary points) filled (no 
voids) with a fixed (in time) collection of particles.  Each particle inside the body has its 
entire surface, S, in contact with other particles contained in the body.  The surface of the 
body is composed entirely of the boundary particles.  Furthermore, the surface of the 
body contains all the surface elements of all the particles in the body.  Each particle is 
defined by its reference coordinates, Xα and, since the particles have infinitesimal sizes, 
the body is considered to be a continuum. 
 
 Force. , is a differential vector quantity that, in the absence of other 
influences, causes a particle to change its velocity vector relative to a spatial coordinate 
system [x] (assumed to be an inertial coordinate system). 
 
 The acceleration of a particle, , is the instantaneous time rate of change of the 
velocity of the particle with respect to a spatial, inertial coordinate system.  That is, 
 

 

 
As  is a vector it may be expressed as, 
 

 
 
where  are components of acceleration referred to the current and reference 
coordinate systems, respectively. 
 
 With the above definitions Newton’s second law for a particle is, 
 

 
 
The nature of the force acting on a particle is restricted according to the following 
definitions. 
 

 
 
where, 
 

 is from external sources such as gravity, assumed bounded 
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 is applied to the surface S of the body, assumed continuously distributed 

 is from contact with contiguous particles appearing as opposing equal forces lying 
          on a common line of action 
 

 is from particles in R, not from contact appearing as opposing equal forces lying 
        on a common line of action 
 
 Now sum all of the forces on particles in R at a fixed time.  This summation has 

no net contribution from  or  owing to opposing equal forces cancelling.  The 
result is, 
 

  

 
and with , 
 

 

 
which is Newton’s linear momentum law for a body. 
 
 The linear momentum law derivation did not take into account the line of action 

restrictions on forces  and .  Satisfaction of these restrictions can be ensured 
if a second integral is formed.  Take an arbitrary point O in the spatial coordinate system 
and consider a deformed, force-loaded body at a fixed time.  Let the vector from point O 
to the ath particle be  and form the cross product with Newton’s linear momentum law 
to obtain, with obvious notation, 
 

 
 
This equation, as it stands, does not give any new information to the theory.  When this 

last equation is summed over all the particles in the body, the contribution from  
vanishes as the contact loads are collinear and opposed.  To find the contribution from 

 for the summation consider the sketch below showing two particles, a and b, in 
the summation. 
 
 
 



 42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By postulating, 
 

 
 
so that the contribution to the summation is, 
 

 
 

Since the vector  is parallel to  the right hand side of the above equation is 
zero.  This result applies to every pair of particles in the body so that the contribution to 

the summation from  is zero.   The equation resulting from the summation is, 
 

 

 
This last equation is Newton’s angular momentum law for the body.  In the following 
work the linear and angular momentum laws derived above are assumed valid for every 
continuous body with constant mass and every sub region therefrom at every instant of 
time.  
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  IV.3  STRESS 
 
 Consider two non-collinear, differential length vectors, , defined in the 
current coordinate system.  They can be used to define an area  with components dai 
that has second order differential length given by, 
 

 
 
Another way of arriving at this result is through the sketch below showing the inclined 
vector for the shaded area and its components with implied directions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general for a closed single surface, S,  where  is the outward, unit normal 

vector and dS is the differential surface area.  Applying this geometric restriction to the 
four-sided figure in the sketch yields, 
 

 
 
which is the same as the result given at the start of this section. 
 
 Now describe the net contact force on the inclined area in its spatial components 
as .  This force has three components so it may be written as, 
 

 
 
where the coefficients sij are the stresses and they are, in general, finite but supposed to 
be bounded.  This formulation can be applied to any so that, 
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In this form it is clear that sij is a second rank tensor. 
 

 For subsequent work two additional requirements are imposed on .  They 
are, 
 

1.  is distributed within the region R so that sij and its first derivative are continuous. 
2.  As an element of area, parallel to the tangent plane at any point on the surface of the 

region R, is taken at interior points closer and closer to the point P,  approaches 

 for the surface point in the limit. 
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  IV.4  RESTRICTIONS ON THE STRESS TENSOR FROM NEWTON’S LAWS 
 
 Any stress distribution in a body or sub body must satisfy Newton’s linear and 
angular momentum laws.  The ways that these laws restrict stress distributions is 
presented in this section.  Recall that stress, sij, is defined from, 
 

 
 
and it may be used with other continuity conditions already imposed to introduce stress 
into the linear and angular momentum laws.  The linear momentum law, 
 

 

 
becomes, 
 

 

 
Gauss’ theorem can be applied to the left hand side of this equation to obtain, 
 

 

 
so that, 
 

 

 
This equation must apply for every sub region of R so the integrand must vanish 
everywhere in R.  This yields the usual form for the linear momentum law, 
 

 

 
and it must be satisfied everywhere in R. 
 
 The angular momentum law gives a second restriction on the stress tensor.  
Following the same procedure as for the linear momentum law yields, 
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After applying Gauss’ theorem to the left hand side of this equation and converting the 
vectors to component form, there results, 
 

 

 
Since this is valid for every sub region of R the integrand must vanish in R so that, 
 

 

 
The term multiplying  vanishes in view of the linear momentum law and, 
 

 

 
so the angular momentum law reduces to, 
 

 
 
or, 
 
skj = sjk  
 
and the restriction from the angular momentum law on the stress tensor is that it is 
symmetric. 
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  IV.5  STRESS TENSORS IN THE REFERENCE CONFIGURATION 
 
 From a physical viewpoint it is natural to develop the concept of stress from the 
differential current contact force acting on a differential area in the current configuration.   
That procedure was followed in the preceding section and the stress, sij, was defined.  In 
this section a stress is defined using the current differential contact force acting on a 
differential area in the reference configuration.  This differential area is the area in the 
reference configuration that corresponds to the differential area in the current 
configuration that the differential contact force is acting upon.  To accomplish this some 
groundwork must precede the definition of the new stress. 
 

 The differential contact force, , may be resolved in the reference 
configuration as, 
 

 
 

The differential area vector  of an element in the reference configuration can also 
be resolved into its reference configuration components as, 
 

 
 
Now a material stress  is defined using, 
 

 
 

and Sαβ as well as  are assumed to be continuous.  Also,  as the surface S 

is approached so .  Since mass is conserved, 
 

 
 
where rO is the mass density of the particle in the reference configuration and 

 so the linear momentum law becomes, 
 

 

 
This form results after the same arguments used in the spatial case concerning the forces 
on a particle are introduced.  Gauss’ theorem may be applied to the first term to obtain, 
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so that, 
 

 

 
Since this integral must vanish for every sub region of RO, the integrand must vanish at 
every point in RO so, 
 

 

 
The linear momentum law requires that this equation be valid in RO.  
 
 To determine restrictions on Sαβ imposed by the angular momentum law, the cross 
product of the position vector  with the linear momentum law is formed and the 
arguments concerning lines of action between particles used in the spatial formulation.are  
introduced.  Note that must be measured in the spatial coordinate system in order to be 
consistent with Newton’s law.  The result is, 
 

 

 
Application of Gauss’ theorem yields, 
 

 

 
so that, 
 

 

 
Since this equation must be satisfied for every sub region of RO, 
 

 for α = 1, 2, 3 
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This equation gives the restriction on Sαβ from the angular momentum law.  Recalling 
that, 
 

 

 
it is clear that Sαβ is not generally symmetric. 
 
 To obtain a relationship between Sαβ and sij the following results presented earlier 
are used as a starting point. 
 

 
 
The quantity  is a differential area in the current configuration while  
is the corresponding differential area in the reference configuration.  The relation 
between these areas has been derived in an earlier section and is repeated here, 
 

 

 
When the last two equations are combined, the result is, 
 

 

 
The complexity of using Sαβ in analysis, primarily because it is not symmetric, makes this 
definition for stress virtually unused. 
 
 In order to be able to formulate theories expressed in the reference configurations 
coordinates, the Kirchhoff stress tensor, Sαβ, often appears in the literature.  It has the 
definition, 
 

 

 
and 
 

 
 
Equating the right hand sides of the last two equations and using, 
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yields, 
 

 

 

now multiplying by  with implied summation to get, 

 

 

 
This equation may be inverted to obtain, 
 

 

 
As sij is symmetric, so is Sαβ.  
 
 The linear momentum law for Sαβ may be obtained by substituting the second-to-
last equation into,  
 

 

 
The angular momentum law is satisfied owing to the requirement of symmetry of sij and 
thus of Sαβ.  
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  IV.6  EXTREME VALUES OF THE SHEAR AND NORMAL STRESSES 
 
 This section determines several useful results concerning stresses.  The results are 
applicable to any real, symmetric second rank matrix.  To simplify the presentation the 
derivations use the principal stresses sI, sII, sIII which can always be found.  Assume the 
principle stresses are ordered so that, 
 

 
 
and the stress matrix is, 
 

 

 
 Now consider a four sided, differential size element with three of the sides 
perpendicular to the three, perpendicular principal directions.  The element is sketched 
below. 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the figure above the stresses on the three principal stress faces are sI, sII, sIII. The areas 
of the three faces are  and the area of the inclined face is, 
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The forces on the three faces are .  The force on the inclined 
area is resolved into a normal component of magnitude, , and a shear component 
parallel to the plane of the inclined face of magnitude, .  Now define, 
 

N = normal stress =  

T = shear stress =  

 
In order to resolve the forces into their components, the following definitions are 
introduced, 
 

 

 
The requirement that the net force on the four-sided element be zero is, 
 

 
 
Force equilibrium in the direction perpendicular to the inclined face gives, 
 

 
 
From the definitions of νI, νII, νIII there results, 
 
  
 
These last three equations may be written in matrix form as, 
 

 

 
The determinant of the coefficient matrix is, 
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First consider the case of the principal values of stress having distinct values so that sI > 
sII > sIII so that the determinant is greater than zero.  In this case the solution for νI, νII, νIII 
is, 
 

 

 
The values of νI, νII, νIII must all be greater than zero in order that the angles they are 
defined by be real.  Therefore, 
 

 

 
When T is plotted versus N, the three inequalities determine regions that are admissible.  
The shaded regions for each inequality are shown in the sketches below. 
 
 
 
 
 
 
 
 
 
 
 
 
When the restrictions from the three inequalities are combined, the result is shown below. 
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The limits of the admissible values for the normal stresses are seen to be sI < N < sIII 
while the limits of the shear stress are 0 < T < ,  These useful results are the 
bases of criteria used in machine design calculations to avoid failures of structures. 
 
 The derivation for cases of repeated principal stresses follows the same scheme.  
The results are consistent with a graphical interpretation of the above sketch.  That is, 
when two principal stresses are equal and distinct from the third, the sketch reduces to a 
circle.  If sI = sII = sIII then the admissible region degenerates to a point. 
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V  STRESS RATE 
 
  V.1  PRELIMINARY CONSIDERATIONS 
 
 The concept of stress rate pursued here is for use in constitutive equations where 
the response of a material depends on its loading as well as the time rate of change of 
loading.  Some viscoelastic materials, by definition, have physical behaviors that require 
consideration of the current stress state and the time rate of change of stress.  The 
definition of an acceptable stress rate, for example, should not be influenced by a rigid 
body motion if the stresses are not altered relative to the body.   
 

Other physical considerations enter into the development of a mathematical 
definition of stress rate.  To illustrate, imagine that a differential area element is 
composed of a layer with a fixed number of particles.  During a general motion this layer 
will change size.  In the simple case where the stress field is a constant, uniform pressure 
the normal stress on the layer does not change and the stress rate could be considered to 
be zero.  On the other hand, the load per particle changes and, assuming the material 
response is influenced by the load per particle, the stress rate will be nontrivial.  It is not 
surprising that different definitions for stress rate appear in the literature. 

 
Results from Section IV suggest that it is more satisfying physically to restrict 

considerations of stress to the definition of the current configuration stress, sij, given by, 
 

 
 
In this section the definitions for stress rate are all given in terms of sij. 
 
 Since any acceptable definition of stress rate must be insensitive to certain cases 
of rigid body motion, it is helpful to introduce vorticity at this point in the development.  
Vorticity is a tensor related to the rotation rate of a body.  Start with the earlier result that, 
 

 

 
and define the vorticity tensor, ωij, using, 
 

 

 
so that, 
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This equation shows that the vorticity matrix, [ω], is asymmetric with the following 
properties, 
 

 

 
Consequently, [ω] has the form, 
 

 

 
with, 
 

 

 
In many developments of fluid mechanics theory the vorticity vector is defined in 

conventional vector notation as the curl of the velocity vector, 
 

 

 
leading to, 
 

 

 
or, 
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The usual fluid mechanics formulation is consistent with the presentation in this work. 
 
 A simple example will serve to illustrate the interaction of the motion and the rate 
of change of stress.  Consider the sketch below of an elastic bar with a uniform, constant, 
axial stress, σ.  The axis of the bar is initially (t = 0) in the x direction and is being rotated 
in the xy plane at the constant rate of rotation, Ω.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear that for this example both the deformation rate, [d], and the stress rate vanish.  
The substantial time derivative of the stress is, 
 

 

 
Although this is the correct answer for the way the spatial stress components are 
changing, it does not represent a valid measure for the stress rate to be included in a 
constitutive equation. 
 
 For example, suppose a constitutive equation is postulated to have the stress rate 
equal to a function of the deformation rate.  If the motion considered is a rigid body 
motion then all the components of [d] vanish but as shown above the components of 

 do not vanish.  Another way of looking at this is that we have defined strain and 

deformation rate to vanish when the motion is a rigid body motion but the same is not 

true of .  Consequently, a different formulation for an acceptable stress rate is 
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required.  To help in the development of acceptable forms for the stress rate, a few 
preliminary results are presented below. 
 
 The motion of a differential length line element fixed in the material is now 
investigated.  Consider two particles P and Q.  In the current configuration P has 
coordinates xi and Q has coordinates xi + dxi and the vector joining the particles, , is, 
 

 

 
Since  is independent of time, 
 

 

 
Define a second differential length vector, , emanating from xi but with a different 
change of spatial coordinates, , to particle M so that, 
 

 

 
The dot product of these two vectors yields, 
 

 
 
and, 
 

 

 
Now note that, 
 

 
 
owing to the asymmetry of ωij.  Combining the last two equations gives, 
 

 

 
owing to the symmetry of dij.   
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 For the special case at particle P where the xi directions are in the principal 
directions for [d], this makes [d] a diagonal matrix.  Let  be directed in one of the 
principal directions while  is directed in one of the other principal directions.  The last 

equation shows that, in this specific case,  so that the vectors are not only 

perpendicular but their rate of change with time is such that they remain perpendicular 
through first order terms in Δt.  This result shows that a cube aligned with the principal 
directions of [d] at time t remains, through first order terms in Δt, a rectangular 
parallelepiped at t + Δt. 
 
 The next item for investigation is to find the time derivative of a unit length 
vector fixed in the material and directed in a principal direction of [d].  Take the vector 

 defined above and form a unit length vector   parallel to  as, 
 

 

 
The time derivative of this vector is, 
 

 

 
Let the xi directions be principal directions for [d] at point P so that, 
 

 

 
and take dx1 = 1, dx2 = dx3 = 0 so that, 
 

 

 
The same scheme can be followed for the other principal directions so, 
 



 60 

 

 
Recall that  is a unit length vector at point P and that the last equation was derived for 
the special case that the xi directions coincide with the principal directions of [d] at point 
P. 
 
 The remainder of Section V reviews four proposed definitions for stress rate that 
appear in the Continuum Mechanics literature.  They were proposed by, 
 

1. G. Jaumann, 1911 
2. C. Truesdell, 1953 
3. B. A. Cotter and R. S. Rivlin, 1955 
4. J. G. Oldroyd, 1956 

 
The derivations for the definitions are given first.  Following this a few examples are 
presented to give a physical picture of the differences between the definitions. 
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  V.2  JAUMANN STRESS RATE 
 
 The derivation for this stress rate definition is based on taking the substantial time 
derivative for a differential size parallelepiped fixed in the material and with edges 
aligned with the principal directions of [d].  This derivative is then transformed to spatial 
coordinates in the current configuration. 
 
 As usual, the base vectors in the spatial coordinates are .  Now, at a generic 
point, determine the unit length base vectors, , that are parallel to the principal 
directions for the deformation rate, [d], at that point.  The stress state sij in the spatial 
coordinates is transformed into the orientation of the principal directions of [d] using, 
 

 
 
where, from earlier results, 
 

 
 
and  is the stress state in the new orientation.  Recalling that  is a set of unit length 
vectors and the derivation presented in the preceding section for unit length vectors fixed 
in the material leads to, 
 

 

 
Since ωij is a second rank tensor the transformation from  is given by, 
 

 
 
Combining the last two equations and recalling that [c] is orthogonal ([c]-1 = [c]T) yields, 
 

 

 
Now take the substantial time derivative of  to obtain, 
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In order for all the components of this derivative to vanish, the quantities multiplying the 
coefficient , must vanish.  These quantities are defined in the current configuration 

and they are the basis of Jaumann’s stress rate definition, , which is, 
 

 

 
or, 
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  V.3  TRUESDELL STRESS RATE 
 
 This definition of stress rate is derived from the Kirchhoff stress tensor.  It is 
noted that the Kirchhoff stress does not have a straightforward physical interpretation so 
this definition is more a mathematical one than a physical one.  The fact that 
mathematical analyses of elasticity problems related to the reference configuration often 
use the Kirchhoff stress has probably prompted this definition. 
 
 Recall the definition of the Kirchhoff stress is, 
 

 

 
or, 
 

 

 

This stress rate will be based on  based on the above equation as follows, 

 

 

 
so that, 
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The stress rate is defined to be zero when all of the components of  vanish.  This 

provides an acceptable stress rate, , as, 
 

  

 
or, 
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  V.4  COTTER-RIVLIN STRESS RATE 
 
 This definition for stress rate is similar to the Jaumann definition.  In this case the 
new “base vectors”, , are fixed in the material and referred to the current configuration.  
Initially these vectors coincide with the spatial base vectors so they are initially unit 
length vectors but their length and orientation change with time.  That is, the 
transformation between this material coordinate system and the current configuration is 
initially cij = δij but it is not constant in time.  This transformation is, 
 

 
 
so that, 
 

 

 
Let  be the transformed stress and take its substantial derivative to obtain, 
 

 

 
Since, at the instant of evaluation, cij = δij,  
 

 

 
This last expression is defined as the Cotter-Rivlin stress rate,  , so, 
 

 

 
or, 
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V.5  OLDROYD STRESS RATE 
 
 This definition is similar to the Truesdell definition as it starts with a stress, S αβ, 
referred to the reference configuration.  The physical basis for the stress is not obvious 
from its definition which is, 
 

 

 
so that, 
 

 

 
Take the substantial time derivative of sij to find, 
 

 

 
so that, 
 

 

 

The Oldroyd stress rate, , vanishes when all the components of   

vanish and it is, 
 

 

 
or, 
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Note that, 
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  V.6  ILLUSTRATIVE EXAMPLES 
 
     EXAMPLE 1  - ROTATION UNDER TENSION (revisiting earlier problem) 
 
 In Section V.1 the case of a rod under tension, σ, in the x1-x2 plane rotating at an 

angular rate of Ω about the x3 axis was studied to show that  is not a valid stress 

rate for use in a constitutive equation.  This illustrative example gives the results of 
finding the stress rates according to the four definitions reviewed above.  The motion for 
this case is, 
 

 

 
so that, 
 

  

 

 

 
and from the earlier consideration, 
 

 

 

 

 
 The results for this illustrative example are given below. 
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Since all dij vanish, 
 

 
 
As expected, all four stress rates vanish for this case. 
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     EXAMPLE 2  - RECTANGULAR MOTION 
 
 The equations governing this motion are ( ), 
 

 

 
The stress state has only normal components, is constant in time and given by, 
 

 

 
For the motion, 
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The stress rates are, 
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 It is instructive to consider several special cases of the solution given above for 
the four stress rates. 
 
If A > 0, B = C = 0 and s1 > 0, s2 = s3 = 0 then there is uniaxial straining with a constant 
axial stress and the only nontrivial values of the stress rates are, 
 

 

 
If A > 0, B = C =  and s1 > 0, s2 = s3 = 0 then at t = 0 this is extension under uniaxial 
tension with initially constant volume motion and the only nontrivial values of the stress 
rates are, 
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If A > 0, B = C = -A and s1 = s2 = s3 = σ then there is uniform expansion with a constant 
hydrostatic stress and the only nontrivial values of the stress rates are, 
 

 

 
     EXAMPLE 3  - SHEAR MOTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The above sketch shows the shearing motion considered for this example.  The 
equations describing this motion are, 
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and the stress state is constant in time and given by, 
 

 

 
and, 
 

 

 
The motion yields the following results, 
 

 

 

 

 

 

 
The four stress rates are now calculated. 
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VI  THERMODYNAMIC CONSIDERATIONS 
 
  VI.1  INTRODUCTION 
 
 A requirement from physical science is that any theory must conform to the 
general results from Thermodynamics.  The purpose of Section VI is to tie the results 
given above to Classical Thermodynamics and to determine any constraints that must be 
imposed on constitutive equations in order for them to conform to Classical 
Thermodynamics.  A brief review of Classical Thermodynamics is in an appendix 
included at the end of this work. 
 
 In the case of a Continuum Mechanics formulation the system is a fixed mass 
particle so that the stresses and strains may be considered uniform.  The first essential 
part of the Appendix concerns the First Law of Thermodynamics for fixed mass systems 
which is expressed as, 
 

 
 
where, 
 

 = time rate of heat flow into the system from its exterior  
=  for a reversible process 

 = time rate of change of internal energy 
 = time rate of work being done by the system on its exterior 

 
In addition, define, 
 
T = absolute temperature 

 = time rate of change of entropy 
ρ = mass density 
 

When a specific constitutive equation is considered, it is often possible to 
determine  explicitly.  Substituting  into the first law and solving for  yields an 
equation whose validity must be determined.  The condition that s be a perfect 
differential (i.e. s is a property dependent only on the state of the material) leads to a 
condition that must be satisfied by E.  When this condition is satisfied then the Inequality 
of Clausis is valid and it becomes a way of expressing the Second Law of 
Thermodynamics as,  
 

 

 
where the inequality becomes the equality only for a reversible cycle. 
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 A special, important result from Thermodynamics is that an equilibrium condition 
is defined.  This is accomplished by considering an isolated system (  and  are both 
zero) and showing, based on the Inequality of Clausis, that any spontaneous change of the 
thermodynamic properties will result in an increase in entropy of the system.  
Equilibrium is defined as a stable state where no spontaneous change occurs in an 
isolated system and it implies that E will be a minimum in this state.  For small deviations 
in the thermodynamic properties from the state being considered the conditions, 
 
δE = 0    and   δ2E > 0 
 
must be satisfied where δE and δ2E are the first and second variations of E.  It is noted 
that the usual stability calculations concerning buckling of beams and other structures is 
not covered by these considerations although the thermodynamic results can be extended 
to cover structural stability.  
 
 Several common, elementary, constitutive equations are reviewed in the section 
below.  In each case, the expressions for E and  are determined as well as investigating 
the conditions for an equilibrium state.  In each case, the derivation is given in spatial 
coordinates.  These reviews show the kind of restrictions thermodynamics imposes on 
constitutive equations. 
 
  VI.2  SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS 
 
  LINEAR THERMOELASTICITY 
 
 The constitutive equation relates the strains, eij, stresses, sij, and absolute 
temperature, T, as, 
 

 
 
where in terms of Young’s modulus, , and Poisson’s ratio, ν, 
 

 

 

 
and 
 
α = thermal coefficient of linear expansion 
ρ = mass density, a function of eij and T 
TO = a constant reference temperature 
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The parameters  are constants so that, up to this point, E and ν are functions of 
eij and T. 
 
 The thermodynamic system under consideration is a particle whose mass is 
constant.  The rate of work done by this particle is, 
 

 

 
Now assume the internal energy, E, is a function of eij and T so that, 
 

 

 
and the Thermodynamic First Law gives, 
 

 

 
The entropy production rate, , is, 
 

 

 
In order that s be a state function, the following condition must be satisfied, 
 

 

 
which gives, 
 

 

 
When the thermoelasticity constitutive equation given above is substituted into this 
condition, the result is, 
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Integration of  gives, 

 
 

 
then, 
 

 

 

 

 
In order to relate H(T) to a physically familiar quantity, note that T is an independent 
thermodynamic property and when the strain rates are zero the value of  is, 
 

 

 
where cV is the specific heat at constant volume and assumed to be constant.  Then. H(T) 
may be written as, 
 

 
 
where T1 is a constant of integration.  Consequently, E may be written as, 
 

 
 
and, 
 

 
 

 

 
 In the case of linear thermoelasticity the constitutive equation is linearized with 
respect to the strains and the temperature.  This process causes the value of ρ to be a 
constant in the constitutive equation and then  and ν are also constants in accordance 
with the usual thermoelastic theory. 
 

When this constant mass thermoelastic system is isolated, the first variation of E, 
δE, vanishes since  vanishes and the second variation, δ2E, is positive definite as the 
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quadratic quantity  is positive definite in eij.  Consequently, the 
system is stable. 

 
The temperature, T, is the absolute temperature in the above derivation.  When the 

constitutive equation is used in problem solving, it is common to replace (T-TO) with a 
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius). 
 
  LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID 
 
 The constitutive equation for this fluid may be written in terms of the stress, σij, 
the strain, eij, the strain rate, , and absolute temperature, T, in the form,  
 

 
 
where, 
 

 = volumetric and shear viscosities, constant material properties 
  = elastic compressibility, constant material property 

α   = thermal coefficient of linear expansion, a constant 
ρ  = mass density, a function of ekk and T 
TO   = a constant reference temperature 
 
This case of a fluid introduces new considerations to the determination of the internal 
energy and the entropy functions.  The presence of a viscosity implies that there is a 
dissipation of energy within the material element owing to flow.  When the system is 
dissipative the entropy function cannot be derived using the constitutive equation in the 
same way as given in the case of the thermoelastic material.  By assuming that E is a 
function of  and proceeding in same way as the thermoelastic material 
derivation shows there is no entropy function that is a state variable.  When dissipation is 
present it is converted to heat and this must be reflected in the contributions to the first 
law.  This may be accomplished in this case by splitting the stress into two parts, σDij and 
σSij.  The stress , σDij, is determined from the part of the constitutive equation causing 
dissipation while the stress,  σSij, is determined from the part of the constitutive equation 
contributing to the recoverable elastic strain energy as follows, 
 

 

 

 The rate of work being done by the system is .  Assume the internal 

energy, E, is a function of ekk and T so that the first law gives, 
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and the entropy production rate, , is 
 

 

 
In order for the entropy to be a state property, 
 

 

 
Assuming the order of differentiation for the second derivatives are interchangeable, the 
equation becomes, 
 

 

 
When the constitutive equation for σSij is substituted into the above equation, the result 
is, 
 

 

 
The last equation is integrated to give, 
 

 
 
where J(T) is an arbitrary function of T.  When E is substituted into the expressions for 
heat flow rate and entropy production rate given above, the expressions become, 
 

 

 

 

 
When  = 0, the heat flow rate is usually written as  with cV being the specific 
heat.  In this case, 
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When cV is a constant, integration yields, 
 

 
 
where T1 is a constant of integration.  To summarize, 
 

 
 

 

 
 

 
The value of  in these equations is the total heat flow rate for the system and some is 
generated internally while the remainder is supplied externally to the material element.  
The internal heat flow rate, , is, 
 

  

 
Now let the externally supplied heat flow rate be  so that, 
 

 
 
and, 
 

 
 
  ELASTIC, PERFECTLY-PLASTIC SOLID 
 
 The formulation investigated here is the one appearing in the text, Theory of 
Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons, 
Inc., 1951).  The von Mises stress, σVM, is defined to be, 
 

 
 
and possible stress states must be such that, 
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where σYP is the yield point of the material, a constant.  The strain is split into two parts. 
The elastic strain, eEij, is directly related to the stress state while the plastic strain, ePij, is 
adjusted to be proportional to the reduced stress, .  The total strain rate is 
the sum of the elastic strain rate and the plastic strain rate, .  The relationship 
between the stress and the elastic strain is, 
 

 
 
where the material parameter nomenclature is the same nomenclature used for the elastic 
material considered above.  The plastic strain changes over a loading increment when 

 during the increment.  This change is expressed by, 
 

 while  
 

   otherwise 
 
where Γ must be adjusted so that .  Note that  so that the plastic 
strains cause no rate of volume change.  The rate of doing external work for the elastic 
strain is assumed to be recoverable while the rate of doing work for the plastic strain is 
assumed to be dissipated into a heat flow rate within the material element.  Define these 
as, 
 

 

 

  while  

 
       otherwise 

 
 Now assume that the internal energy, E, is a function of the elastic strain, eEij, and 
the temperature T.  For this material the first law is written as, 
 

 
 
so that, 
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and, 
 

 

 
In order for the entropy to be a property, 
 

 
As usual, the order of differentiation of the second derivatives is assumed 
interchangeable so that, 
 

 

 
When this equation is integrated there results, 
 

 
 
and, 
 

 

 

 

 
Now define a specific heat at constant volume, cV, using, 
 

 
 
to obtain, 
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where, obviously, cV is a function of temperature only.  The heat flow rate and entropy 
production rate may be written as, 
 

 
 

 

 
Similar to the case for a fluid, the quantity  is the total heat flow rate in the material 
element.  The quantity  is the rate of work for the plastic strain that is converted to a 
heat flow rate.  Let  be the externally supplied heat flow rate so that, 
 

 
 
INCOMPRESSIBLE BINGHAM MATERIAL. 
 
 The most common formulation neglects thermal expansion and elastic behavior of 
the material and this approximation is employed here.  This material has a yield point 
stress that must be exceeded before the material can deform.  When the yield stress is 
exceeded, the material flows similar to a fluid but with the flow rate proportional to the 
excess of the stress over the yield point stress.  Let, 
 

 
 
where σVM is the von Mises stress in tension and τVM is the von Mises stress in shear.  
The yield point stress in shear is denoted by τYP and it is the value of the von Mises stress 
in simple shear that causes yielding of the material.  For this material it is common to 
formulate the constitutive equation in terms of the constant value of τYP.  The constitutive 
equation for the incompressible Bingham material is. 
 

  when  

      otherwise 
 
When this material undergoes deformation, the entire rate of work done by the stresses is 
converted to a heat flow rate.  Consequently, in the first law .  In addition, the 
internal energy is assumed to be a function of temperature only.  Under these conditions, 
the first law becomes, 
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and the entropy production rate is, 
 

 

 

Clearly,  may be interpreted as the specific heat at constant volume, cV, so that, 

 
 

 

 

 

During deformation, the quantity  is the heat flow rate internal to the material 

element and, 
 

 ,  

 
 so that the externally supplied heat flow rate, , is, 
 

  ,  

 
     , otherwise 

 
Owing to the assumption of incompressibility the mean stress, , is indeterminate 
from the deformation. A similar situation occurs in the case of any incompressible 
material..   
 
PENG-ROBINSON CUBIC EQUATION OF STATE 
 
 This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations.  For a specified state (vapor or liquid) the equation 
contains three constants, R, a and b.  It relates the pressure, p, to the specific volume, v, 
and temperature, T, as follows, 
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For this case assume the internal energy is a function of the specific volume and the 
temperature, E = E(v, T).  The first law yields, 
 

 

 
and then, 
 

 

 
 In order for the entropy to be a state variable, 
 

 

 
Assuming the second derivatives are independent of the order of differentiation gives, 
 

 

 
When p is eliminated from this equation using the equation of state, the result is, 
 

 

 
and integration gives, 
 

 

 
so that 
 

 

 
The multiplier of  is the specific heat at constant volume, cV, so the heat flow rate and 
entropy production rate become, 
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VOIGT MATERIAL (KELVIN-VOIGT MATERIAL) 
 
 The sketch below is a conceptual description of this material.  Although it is 
helpful to represent the physical characteristics of the material with this sort of sketch, D. 
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics, 
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations 
of such sketches. 
 
 
 
 
 
 
 
 
 
 
 
 
 The contributions to the stress, σEij, and σVij, are taken as the classical 
formulations for thermoelastic and viscous materials.  The external work is associated 
with σEij only as the work associated with σVij is dissipated as heat in the material 
element.   The total stress is the sum of the two contributions so, 
 

 

 
 

 
 

 
The internal energy, E, is assumed to be a function of σEij and T only.  The work term is 

taken as  and then the first law becomes. 

 

 

 
and 
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The condition that must be satisfied in order that the entropy, s, be a state variable is, 
 

 

 
Assuming the order of differentiation for the second derivatives may be interchanged, 
this condition becomes, 
 

 

 
When the constitutive equation is substituted into this condition, the result is, 
 

 

 
and integration gives, 
 

 
 
with M(T) being an arbitrary function of temperature.  Recognizing that the specific heat 
at constant volume, cV, is related to M(T) through, 
 

 

 
yields, 
 

 
 

 

 

Since the internally generated heat flow rate is , the external heat flow rate, , 

is given by, 
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MAXWELL MATERIAL 
 
 The sketch below gives a conceptual, physical understanding of the Maxwell 
material.  The strain has separate elastic and viscous components, eEij and eVij, that are 
induced by the total stress, σij.  
 
 
 
 
 
 
 
 
 
 
 
 

The analytical model developed here uses classical definitions to relate σij, eEij 
and eVij as follows, 

 
 

 
 

 
and the total strain rate, , is defined as, 
 

 
 

The external rate of work is  while the internal rate of work that is converted 

to heat flow rate is  and the internal energy, E, is assumed to be a function of 

eEij and T only.  The first law is, 
 

 

 



 93 

and 
 

 

 
The condition that entropy be a state variable is, 
 

 

 
With the assumption that the order of differentiation may be interchanged, this equation 
becomes, 
 

 

 
Substitution of the constitutive equation into this equation gives, 
 

 

 
and integration leads to, 
 

 
 
The function of integration, N(T), is related to the specific heat at constant volume, cV, 
through, 
 

 

 
so that, 
 

 
 

 

 
The external heat flow rate, , is the difference between the total heat flow rate, , and 

the internal heat flow rate, , so that, 
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APPENDIX,  CLASSICAL THERMODYNAMICS 
 
FIRST LAW 
 
Define a system as a fixed mass enclosed in a single surface boundary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first law of Thermodynamics is a statement of conservation of energy for a system 
undergoing a thermodynamic change. 
 

 
 
In classical thermodynamics the development is simplified by assuming the state of the 
system is dependent on only three variables that are related through an equation of state. 
 
Variables and equation of state: 
 
f(P, V, T) = 0 
 
where, 
 
P = pressure 
V = volume 
T = temperature, the exact scale to be used is defined later 
 
Define the specific heat at constant V for the system as, 
 

 

Define the specific heat at constant P for the system as, 
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The internal energy may be considered as E(V, T) in view of the equation of state so that, 
 

 

 
Differentiating again with respect to T yields, 
 

 

 
so that, 
 

 

 
Define the enthalpy, H, as, 
 

 
 
The Joule-Thompson coefficient, µJ.T., is defined as, 
 

 

 
Ideal Gas 
 
Temporarily consider the thermodynamic system to be a fixed mass of an ideal gas.   
 
First part of definition of an ideal gas. 
 

 

An early experimental result  by Joule is adopted as the other part of the definition of an 
ideal gas. 
 

Joule’s experiment  
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In this case, 
 

  

 
 Therefore E = E(T) and 
 

1  

2.  

3. For reversible isothermal process     

4. For reversible adiabatic process        

 If, in addition, CV is constant        
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SECOND LAW 
 
Return to considerations of the general case (not necessarily an ideal gas). 
 
 
Carnot (reversible) engine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e = efficiency =  

 
Consider two identical Carnot engines running in opposite directions.  Unless they have 
same efficiency a perpetual motion can be built.  Therefore, 
 

 

For a general gas running to produce W > 0 
, 
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P1, V1   to  P2, V2  is a reversible isothermal expansion at temperature T2  
P2, V2   to  P3, V3  is a reversible adiabatic expansion to temperature T1 
P3, V3   to  P4, V4  is a reversible isothermal compression at temperature T1  
P4, V4   to  P1, V1  is a reversible adiabatic compression to temperature T2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From left Carnot engines,   From right Carnot engine, 
 

    

 
The two conitions are equivalent, therefore,  

f(T1, T3) = f(T1, T2) 
. f(T1, T3)  

 

Note that f(T1, T2) is independent of T3 so that   

 

Then    

 
Now choose F(T) = T so that T is the thermodynamic temperature scale and, 
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When the temperature is defined this way it is called Kelvin’s thermodynamic 
temperature scale. 
 
Before using the ideal gas law, it is necessary to check to see if the temperature in this 
law is consistent with the above definition of temperature.  Therefore, return to the ideal 
gas law temporarily.  Calculate W and q for each of the four parts of the Carnot cycle. 
 

Isothermal expansion:   

Adiabatic expansion:   

Isothermal compression:  

Adiabatic compression:  

 

W = W1 + W2 + W3 + W4  =   

 

Using the thermodynamic temperature result,  , yields  so that, 

 

W = and then 

 

 

 
This result for efficiency is the same as the earlier definition so the temperature in the 
ideal gas law is on a thermodynamic temperature scale. 
 
Returning now to the general case, a common definition for the Second Law of 
Thermodynamics is that for any reversible engine. 
 

  where S is the entropy 
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and for any engine that is not reversible, 
 

  e. g.   

 
The above equation is known as the Inequality of Clausis. 
 
Return again to the ideal gas to determine some expressions for entropy. 
 

 

 

 
If CV is constant, 
 

 

 
If V is constant also,   

  

 
 If, instead, the change is isothermal, 
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EQUILIBRIUM CONSIDERATIONS 
 
 First, an isolated system is defined as having W = 0 and q = 0 as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the following cycle for this isolated system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this cycle, recalling the Inequality of Clausis, 
 

 

 
The first integral must vanish since q = 0.  The second integral equals S1 – S2.  Therefore, 
 
S1 – S2 < 0  or  S2 – S1 > 0 
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This shows that, whereas the energy of the universe is constant, the entropy of the 
universe is approaching a maximum.  An isolated system may also be defined as having 
E and V constant. 
 
Consider a spontaneous change in an isolated system.  It must be accompanied by ΔS > 0. 
 
Equilibrium is defined as the state where no spontaneous changes occur.  From this two 
equivalent equilibrium criteria are deduced.  They are, 
 

1 At constant E and V the entropy is maximized. 
2 At constant S and V the internal energy is minimized. 

 
Although these are valid, they have limited use.  The second criterion is applied for 
spring-mass systems in mechanics thus leading to the minimum energy theorem. 
 
The above two equilibrium conditions are not too useful in chemistry.  Now get two more 
equilibrium related results that are widely used.  Let, 
 
A = work function or Helmholtz free energy = E – T . S 
 
F = thermodynamic potential = free energy = Gibbs free energy = H – T . S 
 
F = A + P . V 
 
For a constant T reversible change, 
 

 
 
For a real system, 
 
W < WMAX  
 
For a constant P reversible change, 
 
ΔF = ΔA + P . ΔV 
 
if this change is also a constant temperature change, 
 

 
 
Most laboratory experiments (electricity excluded) in chemistry are performed under 
conditions of constant T and P such that WNET = 0 so that ΔF = 0.  Since ΔS > 0 or ΔH < 
0 cause ΔF < 0 another equilibrium condition is determined. 
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The two new equilibrium conditions are, 
 
1. At constant T and P:   F at equilibrium is a minimum 
2. At constant T and V: A at equilibrium is a maximum 
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DETERMINATION OF PROPERTIES FROM EXPERIMENTAL RESULTS 
 

 
 

 
 
so that, 
 

 
 

 

 

For an isothermal change, ΔF = F2 – F1 =    so , given an equation of state, if F 

is known at one pressure it can be found for any other pressure.  For the case of an ideal 

gas,   

 
For a change at constant pressure 
 

 

 
if, in addition, the change is at constant temperature, 
 

 

 
this equation is called the Gibbs-Helmholtz equation and it may be converted to the form, 
 

 

 

Thus the slope of the plot of  is equal to ΔH as shown below. 
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Other relations between the thermodynamic variables can be derived using the 
Gibbs free energy function, F.  Consider the identity, 

 

 

 

Since it has been shown that  there results that, 

 

 

 
so at constant temperature, 
 

 

 
This integration can be performed if the equation of state is known.  In the case of an 

ideal gas we already have shown that  

 
At constant pressure, 
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At constant volume, 
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SUMMARY OF THERMODYNAMIC VARIABLES 
 
H = E + P . V   Enthalpy 
A = E – T . S   Helmholtz free energy or work function 
F = E + P . V – T . S  Gibbs free energy or thermodynamic potential 
 
dE = T . dS – P . dV 
dH = T . dS + V . dP 
dA = -S . dT – P . dV 
dF = -S . dT + V . dP 
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