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SOME PROPERTIES OF ELLIPSES

by Paul R. Paslay, P.E. #44278, Manatee Inc., F-4992

An ellipse is defined in the usual way by,
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where a and b are the semi-axes.  The following results are obvious and often useful,
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The area of the ellipse, A, is given by,
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The area moment of inertia, Ixx , about the x-axis is given by,
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When the middle surface of a thin-walled tube of wall thickness t has a cross section 
that is elliptical, the area moment of inertia about the x-axis is approximated by,
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The perimeter, P, of the ellipse is given by,
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After some manipulations, Equation 9 becomes,
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where E(m) is the complete elliptical integral of the second kind.  The function a . E(m) has
the physical interpretation of being the perimeter length in the first quadrant between the
points (a,0)  and (0,b).   This integral is tabulated in many places.   Elementary geometric
considerations show that,
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    E(0)
 (m = 0 for a circle)

E(1)  =  1 (m = 1 for a line on the x-axis)
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The figure below shows that E(m) is nearly a straight line for m in the range –0.2 < m
< 0.2 .  Two very useful approximations to this function are given by,
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The absolute value of the error in the first expression is less than 4E-5 while the 
corresponding error from the second expression is less than 2E-8.  

In Numerical Recipes by William H. Press et al, E(m) is written in the form, 
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and this book gives a computer code for a rather general function that includes E(m) as,
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see page 185.
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ELLIPTIC INTEGRAL OF SECOND KIND, E(m)   
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The following figure shows the elliptic integral for the range of arguments from 0 
to 1.

In the sketch above the point P(x,y) is shown as a point on the ellipse in the first
quadrant.  The distance along the ellipse in the first quadrant from (a,0) to P(x,y) is denoted
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 m,Ea  .  The function,   ,m,E   is called the Legendre elliptic integral of the second
kind and it is defined by any of the following expressions,
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Numerical Recipes also has this function in the form of a computer code so that,
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Consider a circle of radius RO.  The perimeter of this circle is 2  .  . RO.  Now
consider an ellipse with semi-axes defined by,
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Recalling that E(m) is nearly linear with m in the neighborhood of m = 0, an approximation 
for E(m) is,

5



 
  















2OV  1

OV
 - 1

2
  mE


            24

The area of the ellipse is given by,

A  =  area of the ellipse  =   . RO2 . (1 – OV2)             25
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The perimeter of the ellipse is greater than the perimeter of the circle of radius RO.  The
“mean hoop strain”, hoop, associated changing from the circle to the ellipse is given by,
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When the perimeter is not  permitted to  change length while changing from a circle to  an
ellipse, the above strain must be removed.  This may be accomplished by “shrinking” the
cross section uniformly.  Each dimension is divided by (1 + ehoop).  When the shrinking is done
the area, A, of the ellipse is, 

A  =   . RO2 . (1 – OV2) / (1 + hoop)2              29

In many applications other characteristics of an ellipse are required.  The following
derivation is to determine the curvature as a function of x in the first quadrant for the ellipse
defined by a = RO + R and b = RO - R so that,
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Denote (x) as the curvature so that,
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The curve below is based on Equation 33,

 
The following expressions for curvature at the semi-axes are sometimes useful,
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or,
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If the “shrinkage” mentioned above is applied to  the ellipse then the curvatures should be
multiplied by (1 + hoop).  The curves below show the changes of dimensionless curvature with
ovality, taking into account the shrinkage.  These curves show that, for small ovality changes
from a circular section, the curvature changes can be approximated using,
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A useful formulation for finding the change in area from a circle to an ellipse of the
same perimeter with ovality OV is given below using the approximation,
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E(OV) = complete elliptical integral of the second kind as a function of ovality
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The  curves  below  indicate  the  quality  of  the  match  with  the  calculated  values  using
Numerical Recipes .

Consider the circle of radius rO.  Maintain the perimeter constant  and distort  the
circle to an ellipse of ovality OV.  Denote the major and minor semi-axes as,

a = rO + r1 + r2                        38

b = rO + r1 - r2                        39

The original ovality is zero and the final ovality is,
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The original perimeter is 2..rO and the final perimeter, PF, is,
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The condition that the perimeter is unchanged gives,
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Substituting Equation 42 into Equation 40 to eliminate r1 gives,
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In  the  literature  concerning  “Plates  and  Shells”,  the  mathematical  modeling  for
ovalling of a cylinder is usually different from the elliptical shape considered above.  The
common form for ovalling is that  the radial displacement from the initially circular cross
section is proportional to cos .  This formulation is presented below and then compared with
the results presented above for ellipses.

Consider a circle of radius rO with points A and B fixed on the perimeter.  The points
separated  by  the  differential  polar  angle  d.   Now  distort  the  circle  by  specifying
displacements in the plane of the circle.  The displacements are given as an outward radial
displacement,  wr,  and  a  tangential  displacement,  wt.   Each  of  these  displacements  is  a
function of .  Note that, at each fixed point, the radial and tangential directions are referred
to the initial, circular configuration.  The initial distance, dsi, between points A and B is given
by,

dsi  = rO . d 

The distance, dsf, between the points after the circle is distorted may be related to dsi using
straightforward analysis (given at  the end of this appendix) with the result that  the hoop
strain, hoop, is given by,
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where a prime signifies differentiation with respect to  .  When the inextensional theory of
cylindrical shells is studied, the terms in hoop that are linear in wr and wt are set to zero so
that,

wr = - wt’ 48

and then the hoop strain is given by,
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This  strain  results  because  the  usual  inextensional  theory  considers  only  the  linear
displacement terms in the strain equations.

If wt is taken as,

  2sinc  w t 50

so that, from Equation 48,

wr = -2 . c . cos(2 . ) 51

and hoop is given by,
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Note that this strain includes the term 
2

2
t

rO2

w


 in Equation 47.  This term shows that when wr

= 0 and wt is constant (this satisfies Equation 48), there is a non-trivial hoop strain.  This
result is correct and follows from the definition of wt being in the tangential direction for the
circular configuration, see sketch below,
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The hoop strain induced by this displacement is 
rO

rO -  w rO 2
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2  .  For wt << rO, this hoop
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If the perimeter is reduced by reducing the radius by r to offset the perimeter growth P,
the result is,
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so that the area change, AP, for this perimeter adjustment is approximated by,
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The changes of areas, Ar and At , associated with wr and wt , respectively are, to second
order terms in wr and wt,

 









 






2  

0  

22t2
r2

1
r c2 -  rO - d

rO

'w
  1 w rO  A 56


















2  

0  

2
2

2
t

2
1

t c
2

    
2

drO

rO

w
rO2  A 57

Consequently, when the perimeter is restricted to  being inextensible through second order
terms in wr and wt, the net change in area, Area, is approximated by,

2
2

2
2

trP c6 -  
2

c
  c2 - 

2

c9
-  A  A  A  Area   59

or

2

2 rO

c
6-  

rO

Area












60

Now, the “ovality” for the distorted configuration is given as “OV” where,
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   
    rO

c2
  

diameter minimum  diameter maximum

diameter minimum - diameter maximum
  OV""




 61

Combining Equations 60 and 61 yields,

2
2

OV""
2

3
-  

rO

Area 





          60a

This  result  agrees  with  Equation  45  for  the  case  of  an  ellipse.   Thus,  the  sinusoidal
formulation is, to second order terms in wr and wt, equivalent to the elliptical formulation.  At
the practical level, the results show that classical collapse analysis of thin-walled cylindrical
shells may be simplified by using the sinusoidal formulation to find the changes in curvature
while using the elliptical formulation to find the change in area.

It is interesting to note that when Equation 50 is replaced by,

  nsinc  w t           61a

then,

  ncoscn-  w r 62

    


 nsin1 - n
rO2

c
  222

2

2

hoop 63

 
rO2

c1 - n
  P

222


  64

 
rO4

c1 - n
- r 

222


 65

 
2

c1 - n
-  A

222

P
  66

2
2

r c
2

n
-  A   67

2
t c

2
  A  

68

  2
22

c
2

1 - nn
-  Area   69
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  222

2 rO

c

2

1 - nn
-  

rO

Area











70

   
    rO

cn
  

radius minimum  radius maximum

radius minimum - radius maximum
  "VO"






71

2
2

2
"VO"

2

1 - n
-  

rO

Area 





72

As a concluding observation the derivation of the hoop strain,  hoop, in terms of the
radial and tangential displacements, wr() and wt(), is presented.  First consider the points A
and B defined on page 10 in the undeformed configuration.  Using the conventional Cartesian
coordinate system, the x and y coordinates if the two points are given by,




sinrO  y

cosrO  x

A

A




73

and

 
 


d  sinrO  y

d  cosrO  x

A

A




74

The differential distance between points A and B in the undeformed configuration, dsi,  is
obtained using the identities,

 
  bsinasin - bcosacos  b  acos

bsinacos  bcosasin  b  asin




75

so that,

       
   222222

22222
i

drO  dsin-  cosrO        

 sin - d  sinrO  cos - d  cosrO  ds









76

In the deformed configuration the  positions of material fixed points  A and B are
changed to the positions B

~
 and A

~  with the radial and tangential displacements, wr and
wt.   These displacements and their  derivatives with respect  to   are  assumed to  be very small
compared to rO.  The new positions are now,
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 
  


cos w sin w rO  y

sin w- cos w rO  x

trA
~

trA
~




77

and,

       
       


d  cosd' w w  d  sind' w  w rO  y

d  sind' w w - d  cosd' w  w rO  x

ttrrB
~

ttrrB
~




78

so that, through first order terms in d,

    
     


dcos' w  w rO  sin w- 'w  y - y

dsin' w  w rO  cos w- 'w   x- x

trtrA
~

B
~

trtrA
~

B
~




79

and then,

     
     22

ttr
2

r
2

ttr
2

rtr
2

2
A
~

B
~2

A
~

B
~2

f

d' w 'ww2   w  w w'w2 - ' w ' w wrO2  rO        

y - y   x- x  ds




80

Recalling that the displacements and their derivatives are small compared to  rO, the hoop
strain may be approximated as follows,

 
 

2

2
t

2
ttrtr

2
r

2
r

2
trtr

22

2
f

hoop

rO2

' w  w w'w2 - 'ww2  ' w w
  

rO

' w w

2

1
 - 

rO

' w w
          

1 - 
drO

ds
  










 












81

Equation 81 is the same as Equation 47
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AN ILLUSTRATIVE PROBLEM USING EQUATION 59 ABOVE:
BUCKLING OF A THIN  CIRCULAR RING, SUBJECTED TO A UNIFORM

RADIAL LOADING

R = mean radius of ring
w = radial component of displacement
EI = bending stiffness for ring
P = radial load per unit length
M = bending moment
θ = angular coordinate
U = strain energy
V = potential energy of load
PE = total potential energy
PE = first variation of PE

PEδ2 = second variation of PE







 w

xd

wd

R

EI
M

2

2

2
























π2

0θ

2

2

2π2

0θ
3

2

θdw
xd

wd

R2

EI
θd

EI2

RM
U

 θ2cosww O 

3

2
O

R

wEI

2

π9
U




  2
O2

32
O4

1 wΔPπwπ6ΔPV  from Equation 59 above

2
O3

wΔP
2

π3

R

EI

2

π9
VUPE 





 

Note  there  are  no linear terms for  wO in the above equation.   This is expected  when a
buckling load is being predicted.  The equilibrium solution is obtained by setting PE to zero
so that,

0δwwΔP
2

π3

R

EI

2

π9
δPE OO3






 

and,

3R

EI3
ΔP


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The physical interpretation of the last equation is that for the assumed displacement and load
distribution the only equilibrium solution is given by this equation.   The stability of this
solution may be found by evaluating PEδ2  and,

  2
O3

2 δwΔP
R

EI3

2

π3
PEδ 





 

The solution is stable whenever PEδ2  > 0.  Consequently,

Limit of stability = buckling load = 3R

EI3
ΔP



 This solution agrees  with the solution in Stephen P. Timoshenko and James M.  Gere’s
Theory of  Elastic  Stability,  Second Edition,  1961,  Section 7.4.   The advantage of using
Equation 59 for the area change is that the perimeter of the ring is unaltered through second
orders terms in wO and the extensional contribution to U can be ignored in the prediction of
the usual buckling pressure differential.
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