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 I.  INTRODUCTION

A requirement from physical science is that any theory describing material 
behavior must conform to the general results from Thermodynamics.  The purpose of this
report is to tie the results given in the file “Classical Thermodynamics” (October 17, 
2015, THERMO.DOC1) to continuum mechanics and to determine any conditions that 
must be imposed on constitutive equations and corresponding internal energies in order 
for them to conform to Classical Thermodynamics.

In the case of a continuum mechanics formulation for a particular  the system 
studied is a fixed mass particle.  The stresses and strains are considered to be uniform.  
The first essential part for this study concerns the First Law of Thermodynamics for fixed
mass systems which may be expressed as,

WρEρqρ  

where definitions and a compatible set of units for this equation are,

qρ  = time rate of heat flow into the system from its exterior, 
secslug

lbin




 

= sTρ   for a reversible process

Eρ  = time rate of change of internal energy, 
secslug

lbin




Wρ  = time rate of work being done by the system on its exterior, 
secslug

lbin




 = mass density, 3in

slug

In addition, define,

T = absolute temperature, oR

sρ  = time rate of reversible change of entropy, 
R-secslug

lbin
o



TOTsρ  = time rate of change of total entropy, 
R-secslug

lbin
o



1  Available from website DR. PAUL PASLAY
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To provide some background, briefly consider the elementary case of combined, 
linear heat transfer and conduction.  Let cV be the specific heat and K the thermal 
conductivity and define I as,

 
t

t

kk

0

tdT,I

where T,kk is the Laplacian, t is time and t0 is a constant reference time.  The reversible 
heat flow rate, REVq , is,

IKTcq VREV
 

Since the is no work done by this system,

0W 

and the First Law of Thermodynamics is,

Eq REV
 

The two equations for REVq  show that E is a function of T and I.  Then,

kkVV T,KTcIKTcI
I

E
T

T

E
E 





 

Consequently,

IKTcE V 

and,

T

T,
K

T

T
c

T

q
s kk

V
REV 




When a specific constitutive equation is considered, it is often possible to express
W  explicitly.  Substituting W  into the first law and solving for s  yields an equation 
whose validity must be determined.  The condition that the entropy, s, be a perfect 
differential (i.e. s is a property dependent only on the state of the material and thus path 
independent) leads to a condition that must be satisfied by E .  When this condition is 
satisfied then the Inequality of Clausius is valid and it becomes a way of expressing the 
Second Law of Thermodynamics as, 

  0ds
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where the equality is only for a reversible cycle.

Several common, elementary, constitutive equations are reviewed in the section 
below.  In each case, the expressions for E, s  and TOTs  are determined.  In each case, 
the derivation is given in Cartesian spatial coordinates.  These reviews show the kind of 
restrictions thermodynamics imposes on constitutive equations undergoing changes of 
equilibrium states.

The results below use the common indicial notation for the subscripts i, j, k, and 
m.  A comma preceding subscripts implies partial differentiation with respect to the 
subscript variable.  Additionally, a repeated subscript occurring in a single term implies 
summation over x, y and z for that term.

Let ij be the Kronecker delta defined as,

jiwhen0

jiwhen1δ ij





then a few examples using indicial notation are,

3δδ ijij 

zzyyxxkkijij σσσσδσ 

z

σ

y

σ

x

σ

x

σ
,σ zyx

i

i
ii 


















     
 2

zx
2

yz
2

xyxxzzzzyyyyxx
2

zz
2

yy
2

xx

2
kk3

1
ijij2

3
ijkk3

1
ijijkk3

1
ij2

3
2

2
VM

σσσ3σσσσσσσσσ

σσσδσσδσσJσ




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 II.  SELECTED, ILLUSTRATIVE, CONSTITUTIVE EQUATIONS

  A.  LINEAR THERMOELASTICITY

This constitutive equation relates the strains, eij, stresses, sij, and absolute 
temperature, T, as,

   
  ijijijkk

ijijijkkij

δTαG2λ̂3eĜ2δeλ̂

δTαeĜ2δTα3eλ̂σ





where in terms of the material constants Young’s modulus, Ê , and Poisson’s ratio, ,

   ν21ν1

Êν
λ̂




 ν12

Ê
Ĝ




ν21

Ê
Ĝ2λ̂3




 
λ̂

Ĝ2λ̂3Ĝ
Ê



 λ̂Ĝ2

λ̂
ν




and the inverse of the constitutive equation is,

 

  ijkkij

ijkkijij

δTασ
Ĝ2λ̂3Ĝ2

λ̂
σ

Ĝ2

1

δTασ
Ĝμ12

μ
σ

Ĝ2

1
e





































 = thermal coefficient of linear expansion = 
Rslug

in
,

ρ

1

T o

3










 = mass density, a function of eij and T, 3in

slug

The parameters Ĝandλ̂  are constants so that, up to this point the internal energy, E, and
density,  are functions of eij and T.
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The thermodynamic system under consideration is a particle whose mass is 
constant.  The rate of work per unit volume done by this particle on its exterior is,

ijij eσW  

Now assume the internal energy per unit volume is a function of eij and T so that,

T
T

E
e

e

E
E ij

ij

 






and the Thermodynamic First Law gives,

T
T

E
eσ

e

E
WEq ijij

ij

 

















The reversible entropy production rate, s , is,

T
T

E

T

1
eσ

e

E

T

1

T

q
s ijij

ij




 

















In order that s be a state function, the following condition must be satisfied,









































T

E

T

1

e
σ

e

E

T

1

T ij
ij

ij

The order of differentiation may be reversed so that,

T

σ
Tσ

e

E ij
ij

ij 






When the thermoelasticity constitutive equation given above is substituted into this 
condition, the result is,

ijijkk
ij

eĜ2δeλ̂
e

E 



Integration of 
ije

E




 gives,

   THeeĜeλ̂E ijij
2

kk2
1 

then,
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   
T

T

TH
eTαĜ2λ̂3q kk

 




   
T

T

T

TH
eαĜ2λ̂3s kk


 




In order to relate H(T) to a physically familiar quantity, note that T is an independent 
thermodynamic property and when the strain rates are zero the value of q  is,

 
TcT

T

TH
q V0eij

  




where Vc  is the specific heat at constant volume and assumed to be constant.  Then. 
H(T) may be written as,

   OV TTcTH 

where OV Tc   is a constant of integration.  Consequently, E may be written as,

   OVijij
2

kk2
1 T-TceeĜeλ̂E 

and,

  TceTαĜ2λ̂3q Vkk
 

 
T

T
ceαĜ2λ̂3s Vkk


 

and, since there is no energy dissipation in the material,

 
T

T
ceαĜ2λ̂3ss VkkTOT


 

The temperature, T, is the absolute temperature in the above derivation.  When the
constitutive equation is used in problem solving, it is common to replace (T-TO) with a 
temperature that is not a true thermodynamic temperature (e.g. degrees Celsius).
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  B.  LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

The constitutive equation for this fluid may be written in terms of the stress, ij, 
the strain, eij, the deformation rate, ije , and the absolute temperature, T, in the form, 

  ijkkijijkkij δTα3eC
~

eμ~2δeλ
~

σ  

where,

μ~andλ
~

= volumetric and shear viscosities, constant material properties
C
~ = elastic compressibility, constant material property

 = thermal coefficient of linear expansion, a constant

This case of a fluid introduces new considerations to the determination of the 
internal energy and the entropy functions.  The presence of a viscosity implies that there 
is a dissipation of energy within the material element owing to flow.  When the system is 
dissipative the entropy function cannot be derived using the constitutive equation in the 
same way as given in the case of the thermoelastic material.  By assuming that E is a 
function of Tande,e ijij   and proceeding in the same way as the thermoelastic material 
derivation shows there is no entropy function that is a state variable.  When dissipation is 
present it is converted to heat and this must be reflected in the contributions to the First 
Law of Thermodynamics.  From a physical point of view, the total work done by the 
stresses can be divided into two parts.  The first part of the work is that which is required 
to make the entropy a state variable.  The second part of the work is the excess of the 
total work over the first part.  The second part is converted to external heat and is not 
included in the first law equation for the material particle.  This may, in this case, be 
accomplished by splitting the stress into two parts, Dij and Sij.  The stress , Dij, is 
determined from the part of the constitutive equation causing dissipation while the stress, 
Sij, is determined from the part of the constitutive equation contributing to the 
recoverable elastic strain energy as follows,

  ijkkij

ijijkkij

ijijij

δTα3eC
~

σS

eμ2δeλσD

σSσDσ









The rate of work per unit volume being done by the system is ijij eσS  .  Assume
the internal energy is a function of ekk and T so that the First Law of Thermodynamics 
gives,

T
T

E
eσSδ

e

E
eσST

T

E
e

e

E
q ijijij

kk
ijijkk

kk

 


















and the entropy production rate, s , is
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T

T

T

E
eσSδ

e

E

T

1
s ijijij

kk


 













In order for the entropy to be a state property,

ij
kk

2

ij

2
ij

ij
kk

2

ijij
kk

2
δ

Te

E

T

1

Te

E

T

1

T

σS
δ

eT

E

T

1
σSδ

e

E

T

1 




























The order of differentiation for the second derivatives is interchangeable so this equation 
becomes,

ij
kk

ij
ij δ

e

E
σS

T

σS
T 









When the constitutive equation for Sij is substituted into the above equation, the result 
is,

kk
kk

eC
~

e

E 



The last equation is integrated to give,

 TJeC
~

E 2
kk2

1 

where J(T) is an arbitrary function of T.  When E is substituted into the expressions for 
heat flow rate and entropy production rate given above, the expressions become,

 
T

dT

TJd
eC

~
Tα3q kk

 

 
T

T

dT

TJd
eC

~
α3s kk


 

When kke  = 0, the heat flow rate is usually written as TcV
  with cV being the specific 

heat.  In this case,

 
Vc

dT

TJd 

Since cV is assumed to be a constant, integration yields,

   OV TTcTJ 
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where Ov Tc   is a constant of integration.  To summarize,

TceC
~

Tα3q Vkk
 

T

T
ceC

~
α3s Vkk


 

 OV
2

kk2
1 TTceC

~
E 

The value of q  in these equations is the total heat flow rate for the system and some is 
generated internally while the remainder is supplied externally to the material element.  
The internal heat flow rate, Dq , is,

  ijijijkkijijD eeμ2δeλeσDq 





   

Now let the externally supplied heat flow rate be q  so that,

Dqqq  

and,

ijij
2

kkVkk eeμ2eλTceC
~

Tα3q  

and then,

ijij
2

kkVkkTOT ee
T

μ2
e

T

λ

T

T
ceC

~
α3

T

q
s 





 

The rate of entropy change for the dissipation, DISSs , equals ssTOT    or,

ijij
2

kkDISS ee
T

μ2
e

T

λ
s  
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  C.  ELASTIC, PERFECTLY-PLASTIC SOLID

The formulation investigated here is the one appearing in the text, Theory of 
Perfectly Plastic Solids, by William Prager and Philip Hodge, Jr. (John Wiley & Sons, 
Inc., 1951).  The von Mises stress, VM, is defined to be,

   ijkk3
1

ijijkk3
1

ij2
32

kk3
1

ijij2
3

VM δσσδσσσσσσ 

And all possible stress states must be such that,

YPVM σσ 

where YP is the yield point of the material in tension, a constant.  The strain is split into 
two parts. The elastic strain, eEij, is directly related to the stress state while the plastic 
strain  rate, ijPe , is adjusted to be proportional to the reduced stress, ijkk3

1
ij δσσ  .  

The total strain rate is the sum of the elastic strain rate and the plastic strain rate,
ijij PeEe   .  The relationship between the stress and the elastic strain is,

     ijijOkkij eEG2δT-TαG2λ3eEλσ 


or after inversion,

    ijOkkijij δT-Tασ
Gμ12

μ
σ

G2

1
eE 











 

where the material parameter nomenclature is generally the same nomenclature used for 
the thermoelastic material considered above.  The plastic strain changes over a loading 
increment when YPVM σσ   during the increment.  This change is governed by,

 ijkk3
1

ijij δσσΓPe  while YPVM σσ 

0Pe ij  otherwise

where  must be adjusted so that YPVM σσ   at the end of the increment.  Note that
0Pe kk   so that the plastic strains contribute nothing to the rate of volume change.  The

rate of doing external work for the elastic strain is assumed to be recoverable while the 
rate of doing work for the plastic strain is assumed to be dissipated into a heat flow rate 
within the material element.  Define these as,

     ijijkkOkkijijE EeeEG2EeT-TαG2λ3eEλEeσW 





 
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 
 2

kk3
1

ijij
2

ijkk3
1

ijijijijP

eEeEeEΓG4

δσσΓeEG2PeσW









 while YPVM σσ 

0WP   otherwise

Now assume that the internal energy, E, is a function of the elastic strain, eEij, and
the temperature T.  For this material the First Law of Thermodynamics is written as,

EWEq  

so that,

     T
T

E
EeeEG2δT-TαG2λ3eEλ

eE

E
q ijijijOkk

ij




 

















and,

     T
T

E

T

1
EeeEG2δT-TαG2λ3eEλ

eE

E

T

1
s ijijijOkk

ij




 

















In order for the entropy to be a property,

      

TeE

E

T

1

δαG2λ3
eET

E

T

1
eEG2δT-TαG2λ3eEλ

eE

E

T

1

ij

2

ij
ij

2

ijijOkk
ij

2







































As usual, the order of differentiation of the second derivatives is assumed interchangeable
so that,

  ijOijijkk
ij

δTαG2λ3eEG2δeEλ
eE

E 

 

When this equation is integrated there results,

   TKETαG2λ3eEeEGeEλE kkOijij
2

kk2
1 



and,

   
T

dT

TKd
EeTαG2λ3q kk




 
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   
T

T

TK

T

1
EeαG2λ3s kk




 




Now define a specific heat at constant volume, cV, using,

Tcq V0Ee kk

  

to obtain,

 
dT

TKd
cV 

where, obviously, cV is a function of temperature only.  The heat flow rate and entropy 
production rate may be written as,

  TcEeTαG2λ3q Vkk



 

  Tc
T

1
EeαG2λ3s Vkk




 

Similar to the case for a fluid, the quantity q  is the total heat flow rate in the material 
element.  The quantity PW  is the rate of work for the plastic strain that is converted to a 
heat flow rate.  Let q  be the externally supplied heat flow rate so that,

If YPVM σσ  :

   2
kk3

1
ijij

2
VkkP eEeEeEΓG4TcEeTαG2λ3Wqq 







and,

   2
kk3

1
ijij

2

VkkTOT eEeEeE
T

ΓG4

T

T
cEeαG2λ3s 









 2
kk3

1
ijij

2

TOTDISS eEeEeE
T

ΓG4
sss 





otherwise:

  TcEeTαG2λ3q Vkk



 

  Tc
T

1
EeαG2λ3s VkkTOT




 
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0sss TOTDISS  
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D.  INCOMPRESSIBLE BINGHAM MATERIAL.

The most common formulation for this material neglects thermal expansion and 
elastic behavior of the material and this approximation is adopted here.  The specific heat,
cV. is assumed to be constant.  This material has a yield point stress that must be exceeded
before the material can deform.  When the yield stress is exceeded, the material flows 
similar to a fluid but with the flow rate proportional to the excess of the stress over the 
yield point stress.  Let,

VM
2

kk3
1

ijij2
32

kk2
1

ijij2
3

VM τ3σσσσσσσ 

where VM is the von Mises stress in tension and VM is the von Mises stress in shear.  The
yield point stress in shear is the value of the von Mises stress in simple shear that causes 
yielding of the material.  For this material it is common to formulate the constitutive 
equation in terms of the constant value of YP.  The constitutive equation for the 
incompressible Bingham material is.

 ijkk3
1

ij
VM

YPVM
ij δσσ

σ

τ3σ
eμ2 


  when YPVM τ3σ 

0eμ2 ij   otherwise

When this material undergoes deformation, the entire rate of work done by the stresses is 
converted to a heat flow rate.  Consequently, in the First Law of Thermodynamics for the 
material 0W  .  In addition, the internal energy is assumed to be a function of 
temperature only.  Under these conditions, the first law becomes,

T
T

E
q  


  

and the entropy production rate is,

T

T

T

E
s


 




Clearly, 
T

E




 may be interpreted as the specific heat at constant volume, cV, and it is 

assumed to have a constant value so that,

 OV TTcE 

Tcq V
 
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T

T
cs V


 

During deformation, the quantity ijij eσ-   is the heat flow rate internal to the material 
element and,

   
μ3

στ3σ
σσσ

σμ2

τ3σ
eσ- VMYPVM2

kk3
1

ijij
VM

YPVM
ijij 







   , YPVM τ3σ 

  = 0 ,          otherwise

 so that the externally supplied heat flow rate, q , is,

 
μ3

στ3σ
Tcq VMYPVM

V 


   , YPVM τ3σ 

Tcq V
   , otherwise

and,

 
Tμ3

στ3σ

T

T
cs VMYPVM

VTOT 





  , YPVM τ3σ 

T

T
cs VTOT


   , otherwise

Owing to the assumption of incompressibility the mean stress, kk3
1 , is 

indeterminate from the deformation. A similar situation occurs in the case of any 
incompressible material.  

The last two equations may be written more compactly using Macaulay brackets2 
as,

 
Tμ3

στ3σ

T

T
cs VMYPVM

VTOT 





 and 
 

Tμ3

στ3σ
s VMYPVM

DISS 




Where the added brackets are defined as,

otherwise0xand0xwhenxx 

E.  PENG-ROBINSON CUBIC EQUATION OF STATE

2  W. H. Macaulay, “Note on the Deflection of Beams”, The Messenger of Mathematics, v. 48, p. 129, 1919
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This equation is used frequently to represent the state of the material in vapor-
liquid equilibrium calculations.  No viscous effects are included here.  For a specified 
state (vapor or liquid) the equation contains three constants, R, a and b.  It relates the 
pressure, p, to the specific volume, v, and absolute temperature, T, as follows,

22 bvb2v

a

bv

TR
p







A consistent set of units is,

p 2in

lbf
R

R

in
0

T oR b
lbf

in 3

v
lbf

in 3

a
lbf

in 4

For this case assume the internal energy is a function of the specific volume and the 
temperature, E = E(v, T).  With 

W rate of doing work = vp 

the First Law of Thermodynamics yields,

T
T

E
vp

v

E
q  








 




and then,

T

T

T

E
vp

v

E

T

1

T

q
s





 








 




In order for the entropy to be a state variable,

Tv

E

T

1

T

p

vT

E

T

1
p

v

E

T

1- 22

2 
















 




The second derivatives are independent of the order of differentiation so that,

0
T

p
Tp

v

E 






When p is eliminated from this equation using the equation of state, the result is,
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22 bvb2v

a

v

E







and integration gives,

   
   TL

b21v

b2-1v
ln

b22

a
TL

b8b2v2

b8b2v2
ln

b8

a
E

2

2

2






























so that

 
T

dT

TLd
v

bv

TR
q  




The multiplier of T  is the specific heat at constant volume, cV, so the heat flow rate and 
entropy production rate become, for constant cV,

Tcv
bv

TR
q V

 



T

T
cv

bv

R

T

q
s V





 




Since there is no energy dissipation for this material,

Tcv
bv

TR
qq V

 



and,

T

T
cv

bv

R
ss VTOT


 




Note that, when a = b = 0, the Peng-Robinson equation reduces to the ideal gas 
law.  Also note that van der Waals’ equation cannot be recovered from the Peng-Robinson
equation as a special case.
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Eij = elastic stress

Vij = viscous stress

ij = stress  = Eij +  Vij

F.  VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)

The sketch below is a conceptual description of this material.  Although it is 
helpful to represent the physical characteristics of the material with this sort of sketch, D. 
C. Drucker (Second-order Effects in Elasticity. Plasticity and Fluid Dynamics, 
International Symposium, Haifa, Israel, April 23-27, 1962) has pointed out the limitations
of material models based on such sketches.

The contributions to the stress, Eij, and Vij, are taken as the classical, linear 
formulations for thermoelastic and viscous materials.  The external work is associated 
with Eij only.  The work associated with Vij is dissipated as heat in the material 
element.   The total stress is the sum of the two contributions so,

   ijijijkkij δTαeG2δTα3eλσE 

ijijkkij eμ2δeλσV  

ijijij σVσEσ 

The internal energy, E, is assumed to be a function of Eij and T only.  The work term is 
taken as ijij eσE   and then the First Law of Thermodynamics becomes.

T
T

E
eσE

e

E
q ijij

ij

 

















and

T

T

T

E
eσE

e

E

T

1

T

q
 s ijij

ij





 


















The condition that must be satisfied in order that the entropy, s, be a state variable is,
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Te

E

T

1

T

σE

eT

E

T

1
σE

e

E

T

1-

ij

2
ij

ij

2

ij
ij

2 

































The order of differentiation for the second derivatives may be interchanged so this 
condition becomes,

T

σE
TσE

e

E ij
ij

ij 






When the constitutive equation for the elastic part of the strain is substituted into this 
condition, the result is,

ijijkk
ij

eG2δeλ
e

E 



and integration gives,

 TMeeGeλE ijij
2

kk2
1 

with M(T) being an arbitrary function of temperature.  Recognizing that the specific heat 
at constant volume, cV, is related to M(T) through,

 
Vc

dT

TMd 

yields,

  TceTαG2λ3q Vkk
 

 
T

T
ceαG2λ3s Vkk


 

Since the internally generated heat flow rate is ijij eσV  , the external heat flow rate, q ,
is given by,

  ijij
2

kkVkk

ijij
2

kkijij

eeμ2eλTceTαG2λ3

eeμ2eλqeσVqq









and,

  ijij
2

kkVkkTOT ee
T

μ2
e

T

λ

T

T
ceαG2λ3s 


 
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and,

ijij
2

kkTOTDISS ee
T

μ2
e

T

λ
sss  
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eEij eVij

ij

G.  MAXWELL MATERIAL

The sketch below gives a conceptual, physical understanding of the Maxwell 
material.  The strain has separate elastic and viscous components, eEij and eVij, that are 
induced by the total stress, ij. 

The analytical model developed here uses classical, linear definitions to relate ij, eEij, 
eVij and T as follows,

   ijijijkkij δTαeEG2δTα3eEλσ 

ijijkkij Veμ2δVeλσ  

and the total strain rate, ije , is defined as,

ijijij VeEee  

The external rate of work is ijij Eeσ   while the internal rate of work that is converted to
heat flow rate is ijij Veσ  .

  kkijijmmkkijij EeG2λ3EeeEG2EeeEλEeσ  

ijij
2

kkijij VeVeμ2VeλVeσ  

The internal energy, E, is assumed to be a function of eEij and T only.  The First Law of 
Thermodynamics for this formulation is,

T
T

E
Eeσ

eE

E
q ijij

ij

 

















and
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T

T

T

E
Eeσ

eE

E

T

1

T

q
s ijij

ij





 


















The condition that entropy be a state variable is,

TeE

E

T

1

T

σ

eET

E

T

1
σ

eE

E

T

1

ij

2
ij

ij

2

ij
ij

2 

































The order of differentiation may be interchanged so this equation becomes,

T

σ
Tσ

eE

E ij
ij

ij 






Substitution of the constitutive equation for the elastic part of the strain into this equation 
gives,

ijijkk
ij

eEG2δeEλ
eE

E 



and integration leads to,

 TNeEeEGeEλE ijij
2

kk2
1 

The function of integration, N(T), is related to the specific heat at constant volume, cV, 
through,

 
dT

TNd
cV 

so that,

  TcEeTαG2λ3q Vkk
 

 
T

T
cEeαG2λ3s Vkk


 

The external heat flow rate, q , is the difference between the total heat flow rate, q , and 
the internal heat flow rate, ijij Veσ  , so that,

  ijij
2

kkVkk

ijij
2

kkijij

VeVeμ2VeλTcEeTαG2λ3

VeVeμ2VeλqVeσqq








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and,

  ijij
2

kkVkkTOT VeVe
T

μ2
Ve

T

λ

T

T
cEeαG2λ3s 


 

where, 

Tα3
G2λ3

σ
Ee kk

kk


 




  2

2
kk2

kk
2λ3

σ
Ve







   
 

  22

2

2

ijij

2

ijij

2

2
kk

2

kk
ijij

234

43

4

σσ
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III.  IRREVERSIBLE THERMODYNAMICS RESULTS FOR SOME COMMON 
ENGINEERING MATERIAL MODELS UNDERGOING CHANGES IN 
THERMODYNAMIC EQUILIBRIUM

INTRODUCTION

The definition of a reversible thermodynamic process for a constant, unit mass 
system is that the rate of change of the system entropy, s , during the process is given by,

T

Q

T

Q
ss REV

REV


 

where a superposed dot implies rate of change and the system has unit volume,

T = absolute temperature

s = actual rate of change of entropy of system

REVs = corresponding rate of change of entropy during a reversible process

Q = actual rate of heat flow into system

REVQ = corresponding rate of heat flow into system undergoing a reversible process

s , REVs , Q  and REVQ  are all per unit volume quantities.

An expression determining REVs  for a homogenous material with defined 
properties may be found as described above using the First Law of Thermodynamics for a
reversible system as,

REVREV W
T

1
E

T

1
s  

where,

E  = rate of internal energy per unit volume increase of the material per unit mass.
   The internal energy, E, is a state variable.

REVW = rate of doing work per unit volume by system (with constitutive equation   
   satisfied).  Instantaneous constitutive equation satisfaction implies instantaneous
   equilibrium states.  The constitutive equation (equation of state) defines the 
   possible equilibrium states for the material.
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The internal energy per unit volume of a homogeneous material is part of the 
definition of the material.  It may be specified, for example, as being a function of strain, 
eij, and temperature, T.  The specification of the variables defining E are based on the 
physical understanding of the material being modeled.

The expression for REVW  may be determined using the constitutive equation for 
the material.  Since the constitutive equation defines only equilibrium states it satisfies 
the required condition on REVW .

When the formulations for E  and REVW  are substituted into the above equation 
for the First Law of Thermodynamics for a reversible system, an equation for REVs  is 
found.  The validity of this equation may be evaluated using a fundamental postulate of 
thermodynamics.  The postulate is that REVs  is a property of the material (not path 
dependent).  For example, when the expressions for E  and REVW  are,

T
T

E
e

e

E
E ij
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





ijijREV eσW  

where ijσ  is a stress component then,
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1
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















If REVs  is a state property, its differential must be an exact differential and expressible 
as,
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

Comparison of the last two equations shows that,








































T

E

T

1

e
σ
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1

T ij
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ij

The last equation is a partial differential equation for E(ij, T).  Since the second 
derivative is independent of the order of differentiation the equation reduces to,

T

σ
Tσ

e

E ij
ij

ij 





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When the constitutive equation is substituted into the last equation, 
ije

E




 is found 

explicitly and E can be determined by integration of this equation.  Clearly, the procedure
just described requires that E , REVW  and the constitutive equations be compatible so 
that E may be determined.  

One extension to the formulation above may be found in the theory of Irreversible
Thermodynamics.  When this theory is limited to processes that are approximated as 
being instantaneously in equilibrium (i.e. satisfy the constitutive equations at every 
instant), the results presented below are obtained using the concept of a dissipative term 
in the First Law of Thermodynamics.  The equations used here for this irreversible 
process are derived by splitting the heat flow rate into two parts.  The first is REVQ  
where it is assumed that the state variable, E, has been determined and REVs  is 
determined as described above,

REVREV sTQ  

The second part of the heat flow, DISSQ , is defined in terms of the actual rate of change 
of entropy, s  as,

  DISSREVDISS sTssTQ  

Consequently, the actual heat flow rate into the system, Q , is,

sTQQQ DISSREV  

The results reported in the preceding section included the procedures given in this section
without introducing the formalities of Irreversible Thermodynamics.  The tabulation 
below summarizes the results of the preceding section.  For each of the seven material 
models studied the following tabulation gives,

1. the constitutive equation
2. the equation for the internal energy. E
3. the reversible rate of change of entropy, REVs

4. the total rate of change of entropy, TOTs

5. the dissipative rate of change of entropy, DISSs

The slight changes in the nomenclature below are obvious.  Two of the seven materials in
the following tabulation have 0sDISS   (linear thermoelasticity and Peng-Robinson).  In
Irreversible Thermodynamic theory the expressions for DISSs  are generalized using 
Onsager’s relations that include non-equilibrium states.  When the constitutive equations 
are satisfied at every instant, DISSs  determines the coefficients for the Onsager relations.
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A.  LINEAR THERMOELASTICITY
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B.  LINEAR, VISCOUS, COMPRESSIBLE NEWTONIAN FLUID

  ijkkijijkkij δTα3eCeμ2δeλσ  

   OV
2

kk2
1 TTceCE 

T

T
ceCα3s VkkREV


 

  ijij
2

kkVkkTOT ee
T

μ2
e

T

λ

T

T
ceCα3s 


 

  ijij
2

kkDISS ee
T

μ2
e

T

λ
s  

28



C.  ELASTIC, PERFECTLY-PLASTIC SOLID
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D.  INCOMPRESSIBLE BINGHAM MATERIAL

VM
2

kk3
1

ijij2
32

kk2
1

ijij2
3

VM τ3σσσσσσσ 

 ijkk3
1

ij
VM

YPVM
ij δσσ

σ

τ3σ
eμ2 


  when YPVM τ3σ 

0eμ2 ij   otherwise

 OV TTcE 

T

T
cs VREV


 

 
Tμ3

στ3σ

T

T
cs VMYPVM

VTOT 





 YPVM τ3σ 

T

T
cs VTOT


  otherwise

 
Tμ3

στ3σ
s VMYPVM

DISS 


 YPVM τ3σ 

0sDISS  otherwise

30



E.  PENG-ROBINSON CUBIC EQUATION OF STATE
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F.  VOIGT MATERIAL (KELVIN-VOIGT MATERIAL)
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G.  MAXWELL MATERIAL
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IV.  NON-EQUILIBRIUM THERMODYNAMICS 

The subject of Non-Equilibrium Thermodynamics considers thermodynamic 
systems that are not at all instants in equilibrium (don’t satisfy the constitutive equations).
The preceding sections have dealt with dissipation resulting from viscous flow and plastic
flow.  In all of the above cases the entropy dissipation can be expressed in terms of state 
variables or their time derivatives ( ijijij eorσ,σ  ).  In this section the more complicated 
case of predicting behavior when the instantaneous state is not in equilibrium is 
considered.

The publication most frequently cited in this field is the book Non-Equilibrium 
Thermodynamics by S. R. de Groot and P. Mazur (Dover Publications, 1984).  This book 
presents the classical approach by using the difference between the total entropy rate and 
the reversible entropy rate as the measure of the non-equilibrium state.  In this book the 
measure is designated by  called”entropy production” and, according to the Second 
Law of Thermodynamics, must be   0.  For cases considered by de Groot and Mazur the
entropy production is restricted to the form,

 
i

ii XJσ

where Ji is a flux, Xi is a thermodynamic force and i is summed over all the non-
equilibrium influences.  The fluxes are assumed to be expressible in the 
phenomenological equations as,

 
j

jiji XLJ

and the quantities Lij are called the phenomenological coefficients.  Eliminating Ji in the 
two preceding equations gives.

 
i j

jiij XXLσ

de Groot and Mazur give numerous examples and show that in many cases, but not all 
cases, the Onsager Reciprocal Relations are satisfied.  The Onsager Reciprocal Relations 
are,

Lij = Lji

that is, the phenomenological coefficients are symmetric

The single case studied below has the constitutive equations completely specified.
This case is in this category of materials with memory. The behavior of these materials 
depends on the past loading history.  When the loading is removed at a specified time the 
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material may continue to deform after that time.  The paper3 describing the constitutive 
equation and giving some comparisons with experiments can be described as an 
incompressible, gelling, Bingham material.  The constitutive equations are, using 
Macaulay brackets,

 ijkk3
1

ij

2

CRIT2
ij δσσ

J

τJ
dμ2 




where,

x = x if x > 0; = 0 otherwise

 = a viscosity type constant, > 0

dij = component of deformation rate, in terms of velocity components vi,
=  ijji2

1 ,v,v 

ij = component of the stress tensor

J2
2 = second invariant of the reduced stress tensor 

=    ijkk3
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shearin point  yieldcurrentt,timeatshearinpointyieldτ
























t = current time

 = dummy variable for time

 = time constant , > 0

 = a constant in the equation for CRIT,   0

3 * A. Slibar and P. R. Paslay, "On  the  Analytical  Description  of  the  Flow  of  
Thixotropic Materials", Second-order Effects in Elasticity, Plasticity and Fluid Dynamics,
International Symposium,  Haifa,  Israel,  April 23-27, (1962) pp. 314-330.
See also H. C. H. Darley and George R. Gray, Composition and Properties of Drilling 
and Completion Fluids, Fifth Edition, Gulf Publishing Company, 1988, pp. 203,204.

35



D2
2 = second invariant of deformation rate tensor

= ijij2
1 dd 

1 = fully gelled yield point in shear,   0

0 = minimum achievable yield point in shear,   0

The rate of doing external work by the stresses, W , is,
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The specific heat, cV, is assumed to be constant and the internal energy, E, is assumed to 
be a function of T only so the reversible rate of heating, REVq , is,
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Similar to the earlier cases for different materials, DISSs  is non-vanishing when there are 
viscous influences in the material behavior.  In the other cases an equilibrium state (i. e.-
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0sDISS   ) can be found by setting the deformation rate to zero.  On the other hand, the 
value of CRIT is dependent on the past history of the deformation rate so an equilibrium 
state cannot be established instantaneously.

For this gelling material it is clear that DISSs  will not vanish when there has been 
a non-vanishing deformation rate.  When a constant, non-vanishing deformation rate is 
imposed for a long time, DISSs  for the material will approach a constant value denoted 
here as the steady state value.  To illustrate how a steady state condition may be 
determined, consider this material in a viscometer that imposes a constant shear 
deformation rate.  Furthermore, idealize this deformation rate as a single non-trivial 
component, dxy, imposed since  .  The value of CRIT can be found from D2 being 
constant (= D0) and D0 = xyd  to be,
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For this deformation rate history the constitutive equations give,

zzyyxx   and xy

as the only non-trivial stress components.  Other than being equal to one another, the 
normal stresses are indeterminate from the constitutive equations because the material is 
incompressible.  For this steady state the shear stress, xy, and all components of the 
deformation rate are time independent.  The x-y constitutive equation becomes,
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The two figures below are based on the last equation.  The first figure shows the 

influence of viscosity when 0 = 0 and the second shows the influence of 
1

0

τ

τ
 when

37



1τ

βαμ 
 = 0.25.
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A second example illustrating the determination of the variation of DISSs  with 
time is presented at this point.  For this example, the only non-vanishing component of 
the deformation rate is dxy > 0.  The time history for dij is defined in the sketch below.

The integral determining CRIT for t > t* is,
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and,
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BCRITxy Dμ2τσ 

The last equation, in dimensionless form after eliminating CRITτ , becomes,
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 , (t – t*) > 0

The above results may be used to evaluate the rate of dissipative entropy, DISSs , 
when t > t* as,
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The figure below gives time histories of 
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V.  OBSERVATIONS CONCERNING NON-EQUILIBRIUM 
THERMODYNAMICS 

The customary presentation and treatment of Non-Equilibrium Thermodynamics is 
exemplified in de Groot and Mazur’s treatise, cited earlier.  Examples of many 
phenomena are presented including thermal conduction, chemical reactions and magnetic
fields.  A change of state is accompanied by a change of entropy.  The excess of this 
change over the corresponding reversible change is expressed as the sum of products of 
“thermodynamic forces” and “thermodynamic displacements”.  A linear relationship 
between these forces and displacements is postulated in every case.  Many phenomena, 
but not all, are shown to satisfy the Onsager Reciprocal Relations.

In continuum mechanics the typical investigation proceeds differently from the 
scheme described in de Groot and Mazur’s treatise.  The common, practical, continuum 
mechanics investigation begins with a specified, defining constitutive equation and a 
compatible internal energy.  The internal energy is compatible when it and the 
constitutive equation can be used with the First Law of Thermodynamics to derive an 
expression for the entropy that is a path independent variable.  The preceding section 
presents a case of a gelling material.  The gelling strength, CRITτ , depends on the past 
history of an invariant of the deformation rate.  The only time an equilibrium state (that 
is, DISSs  = 0) is reached, in a practical sense, is when there has been no shearing for a 
long time. The presence of a practical, steady state behavior is predicted for the gelling 
material when a constant, non-vanishing deformation rate is maintained for a long time.  
Two illustrative examples are given above to demonstrate that the special tools of non-
equilibrium thermodynamics are not required for a typical continuum mechanics study.  
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