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I. INTRODUCTION

The subsidence issue considered in this study is the prediction of the surface
displacements, vertical and radial, owing to changes in the pore pressure within a
reservoir. The model for the predictions is based on a poroelastic half-space containing a
horizontal reservoir. The reservoir is composed of up to 25 circular, parallel layers each
with a height that is small compared to its depth below the surface. The centers of the
layers lie along a single vertical line. The pore pressure does not change outside the
reservoir layers. The pore pressure change within each reservoir layer is composed of
two parts. The first is a uniform pressure decrease in the reservoir from the original
pressure distribution. The second is a steady-state pressure distribution derived from a
specified drawdown pressure using a constant permeability Darcy’s Law.

Each thin circular reservoir layer is modeled as a single layer of “pressure
points”. A pressure point is a small volume in an infinite poroelastic body that undergoes
a pore pressure increase of Ap. The stress and displacement fields surrounding the
pressure point are given in many elasticity textbooks (e.g. Reference 1). This pressure
point solution is used to determine a Green’s Function for constructing the solution for
the half-space containing the reservoir. The tractions on the surface of the half-space are
all zero.

A numerical integration is used for the circumferential and radial integrations that
sum the contributions from the reservoir pressure points. These integrations yield
predictions for the vertical and radial displacements.



II. DESCRIPTION OF ONE LAYER OF THE RESERVOIR CONFIGURATION
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The sketch above shows the most important parameters for the configuration
being studied. The components, Ax, Ay and Az, of the vector from Point RGP in the
reservoir to Point RCP on the x-axis are important for the subsidence calculations. They
are,

Ax = RCP - RG-cos(9)
Ay = RG -sin(9) 1,2,3
Az=H

Consequently, the distance, RGC, between Points RGP and RCP is,

RGC = RGC(RCP, RG, H,9) = \/(RCP ~RG-cos(9)) +(RG-sin(9)) +H> 4

or, equivalently,

RGC = /RCP? + RG? + H? -\ - RD"cos(9) 5

where,

__ 2'RCP'RG
RCP? + RG® + H?




Note that for this configuration the values of both RCP and RG are positive so that RD is
always less than one.

Application of the pressure point solution, given below, to the points in the reservoir
layer (z=H, r =0 to RGmax and & = 0 to2- ) requires integration to find the
displacement at RCP.



III. POINT PRESSURE SOLUTION

Reference 1, pp. 392-395, gives the solution for a spherical hole of radius a
centrally located in a spherical, elastic body of radius b. The inner surface is subjected to
a pressure of Aps with no shear traction. The tractions on the outer surface are zero. Let
R be the radial coordinate in a spherical coordinate system centered in the body. The
radial stress, Ogr, and tangential stress, o, are given by,

a> b’-R’
O AP R
7,8
1 a’ b’ +2-R’
0T=7'ApS'R3' b —a’

To obtain the solution for an infinite elastic medium with a hole of radius = a, let b —
in the two equations above so that,

Clearly, for this solution the only displacement change is the radial displacement, Auys,
which is a function of r. The changes in the radial strain, Aeg, and tangential strain, Aer,
are,

dAu 1 1
Ag, = dRpS "= (o —2v-0,)=- +V-Aps'%
\ 11,12
Au 1 I+v a
AeT= Rp =E.(O-T V.(O-R +0T)— 2EAPSF

where E is Young’s Modulus of Elasticity and v is Poisson’s Ratio. Therefore, the
solution for Auy is,

1+v a’
Aups= 2EAPSF 13

When points remote from the point pressure (R >> a) are considered the shape of the
volume for the point pressure is not important so a® may be approximated by the volume,

VOL, of the sphere (recall for a sphere the volume is 4-7-a’). The generalized result to
be employed in the next section is,



3-(1+v
Aus=M‘Aps-V—OZL 14
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In order to complete the point pressure solution the solution for the displacements
is required. This second solution is for a solid, elastic sphere of radius a subjected to a
uniform external pressure and in addition an internal volumetric strain of 3-Ag. Let the
external pressure be designated as Apx and the radial displacement as Auy. The solution
for this almost trivial problem is,

R A

Au, = R-[Ae —(1—2-\/)-% 15
The nominal radius of this sphere is a. Now requiring radial force equilibrium for the
two solutions at R = a so that,
Aps = Apx 16
and requiring displacement continuity at R = a so that,
Aups = Auy 17
gives the desired result for the point pressure solution that,

2 : E * 1 8

Aps=—=2F A
RN (T e

This last relation between Aps and Ae " is used when the loading changes are given in
terms of Ae " rather than Aps. For example, in thermoelastic analysis Ae" = .- AT where
a 1s the coefficient of linear thermal expansion and AT is the increase in temperature.
Reference 2, Chapter 1 refers to A¢" as an “eigenstrain” and uses this concept to
determine solutions for many problems. The subsidence problem for an ellipsoidal
reservoir with a uniform pore pressure reduction is included in Reference 2.

Finally, for this point pressure solution consider two points in a single vertical
plane as shown below. The results given above are used to find changes of the radial
displacement and stresses at the horizontal surface, Point B, when a point pressure occurs
at Point A below the surface. Now, as a thought experiment, consider rotating the
vertical plane in the figure below between -180° and +180° about Line C-C’. The og and
or stresses at the surface will not be altered but the surface stresses will vary with
rotation angle. In particular, a surface shear stress is developed that is perpendicular to
Line C-C’. Note that this shear stress is an odd function of the angle of rotation.
Consequently, a fictitious point pressure can be superposed at Point D with a negative
point pressure equal in magnitude to the one at a generic point so that the surface
tractions will all be zero. If the location of the generic point is A’ is (X, y, z) then the



location of Point D is (X, y, -z). All points in the reservoir are matched in this way in the
analysis in the next section.
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IV. THE HALF-SPACE PROBLEM

The boundary of the half-space in the model considered here has no applied
nontrivial tractions. The only loading in the half-space is from a finite number of point
pressures applied in the horizontal, thin, circular reservoir layers. The point pressure
solutions for an infinite medium cause nontrivial stresses on the surface of the half-space.
The procedure described in the previous section is used to remove the surface tractions by
superposing fictitious, negative point pressures above the surface. Each point pressure
causes a displacement vector, U, at the surface that is parallel to the line joining the point
pressure location and the surface point being considered. The unit length vector parallel

to this line and pointed toward the surface is denoted by V . Taking into account a single
point pressure with Ap pressure increase gives,

3-(1+v).£.V(2L.\7 19
&m E S

ﬁ:

Now using Equations 1 through 4 the components of u are found with obvious notation

Ax .
u, =—:[u
S
u, =g 20,21,22
S
Az .
u, =22 pq
S

When the displacement changes of the corresponding fictitious, negative point pressure
are added to the displacement changes given by Equations 20, 21 and 22 the result is,

u, =2-%-|ﬁ
u, =0 23,24, 25
u, =2-22.

S

Equations 23, 24 and 25 are used in the calculation results presented in this study.



V. SOME DETAILS CONCERNING THE NUMERICAL INTEGRATION

Program SUBSI6 was prepared as a FORTRAN computer program to make the
calculations described above. It has two straightforward numerical integrations. The first
integration is on the angle and the second integration is on the cylindrical radius r. The
integrations find the outward radial and upward vertical displacements. These
determinations are made for each of the selected radial positions. The integration on &
extends from O to it and is then multiplied by two. The radial integration extends from
the reservoir borehole radius to the radial boundary of the reservoir. When the
coordinates for the RG stations have been set, RG(I), in the program, the point pressure
values, P(I), are determined in source code notation as follows,

[ RGMAX
RG(I)

P(I)= PO - POR + (P - PO)- in (DRAT)
n

26

The input data required for a computer run are (using the notation in the program
source code),

RCMAX = maximum calculation radius, in

NC = number of spaces for RCMAX (< 51)
DRAT = (RCMAX) / (borehole radius)

E = Young's modulus, psi

NU = Poisson's ratio

NH = number of layers

A tabulation of layer properties one row for each layer
RGMAX NG H DH PI PO  POR
where for the I" layer,

RGMAX(I) = reservoir radius, in

NG(I) = number of spaces for RG integration

H(I) = mean depth of reservoir below surface, in
DH(I) = vertical thickness of reservoir, in

PI(I) = producing pressure at reservoir borehole, psi
PO(I) = reservoir pressure at RGMAX, psi

POR(I) = original reservoir uniform pressure, psi

The output data file contains all of the input data as well as a tabulation for [ =1
to NC+1 of,

RC() = radial position, in
DUV() = upward vertical component of surface displacement change, in



DUR(I) = outward radial component of surface displacement change, in
and,

VOLUME OF SURFACE SUBSIDENCE, cu.in.



VI. ILLUSTRATIVE EXAMPLES

The input data for the first illustrative example are,

RCMAX = 20,000. in

NC =20

DRAT = 4,000

E = 500,000. psi

NU =0.25

NH =1

10,000. 100 4000. 200. 2,000. 3,000. 5,000.

RGMAX NG H DH PI PO  POR

10

Note that the reservoir has only one layer. The results given below were checked
by an altered, slower version of the program that uses a Simpson’s Rule integration
scheme to determine successive values for the RG integration as NG is increased. The
progression stops when the change in the integral between steps becomes smaller than a
preset value. The results between the programs agreed with differences in the vertical
displacements occurring in the fourth significant digit and for the radial displacements in

the third significant digit.
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A result of interest in some calculations is the surface subsidence volume

displaced. For the case shown in the above figure,

Displaced volume = 4.12E8 cu.in.
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The input data file for the second illustrative problem is given below. The data
show that there are five layers in the reservoir.

20000.D0 = RCMAX = maximum calculation radius, in

20 =NC = number of spaces for RCMAX (< 51)

4000.D0 = DRAT = (RCMAX) / (borehole radius)

5.D5 =E = Young's modulus, psi

0.25D0 =NU = Poisson's ratio

5 =NH = number of layers

RGMAX NG H DH PI PO POR
6000.D0 100 3000.D0 200.D0 2000.D0 3000.D0 3500.D0
8000.D0 100 3500.D0 200.D0 2250.D0 3250.D0 3750.D0
10000.DO 100 4000.D0 200.D0 2500.D0 3500.D0 4000.D0
8000.D0 100 4500.D0 200.D0 2750.D0 3750.D0 4250.D0
6000.D0 100 5000.DO 200.D0 3000.D0 4000.D0 4500.D0

The figure below gives the surface displacements for this illustrative problem.
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Displaced volume = 1.74E9 cu.in.
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ADDENDUM A - A NOTE ON THE ANGULAR INTEGRATION

The original program that was prepared to obtain data for this study used

13

numerical integration in both the radial and angular directions. This program has been

altered by replacing the angular integration with complete Legendre elliptic integrals,

K(k) and E(k), as described below.

Equations 19 through 22 may be expressed as,

B AX A B-cos(9)
ux = |u| = 1.5 + .5
RGC " (1-RD-cos(®))”  (1-RD-cos(®))
B Ay . C-sin(9)
, = g
RGC (1-RD-cos(9))

_ Az ~|ﬁ|= D
* RGC (I—RD-cos(ﬁ))l'5

with RD, A, B, C and D independent of ¥. Let,

AAE3.(1+V)- Ap-VOL
87 E-(RCP*+RG>+H)’

then,

= RC?’ZECIEGE{S-} ol for this problem 0 = RD = 1
A =AA-RCP
B=-AA-RG
C=AA‘RG
D=AA-H

Al

A2

A3

Ad

AS

A6

A7

A8

A9

Consequently, the integration on O can be accomplished when the following integrals

have been evaluated.

11 =ﬁ)n (1- RD-cos(ﬁ))_l'5 -dY

Al0
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12 =j:cos(ﬁ)-(l - RD-cos(l‘}))_l'5 -dY All

3= j;ﬂsin(ﬁ)-(l ~RD-cos(9)) "~ -d ¥ Al2

The integrations yield,

2 1+ RD 2-RD
= — . + . Al3
(1+RD : 1-RD RD -1
_ 2 . 1+RD E 2-RD —(1+RD)-K 2-RD Ald
RD-(1+RD)' 1-RD RD -1 RD -1
3= 2. ! - ! AlS
RD | 1-RD /1+RD
where,
K(k) = complete elliptic integral of 1* kind = f 2 de Al6
¢ J1-k-sin’ ()

E(k) = complete elliptic integral of 2™ kind = [2./1 - k* sin® (¢ )-d ¢ Al7
0

Subroutines for K(k) and E(k) are readily available (e.g. — Numerical Recipes). Note that
the argument k is an imaginary number while K(k) and E(k) are real.

When the integrals in Equations A10, A11 and A12 are extended from m to 2 7
and the presence of the fictitious negative point pressure at -z are taken into account,

analogous to Equations 23, 24 and 25, the results are that,

ux = x component of displacement = 4-u_ Al8

uy =y component of displacement = 0 A19

u, =z component of displacement = 4-u, A20
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ADDENDUM B — DISPLACEMENTS BELOW THE HALF-SPACE SURFACE

The procedure described above calculates the surface displacements by applying
pressure points within the reservoir being studied. In order to have surface tractions
(normal and shear stresses) vanish, a fictitious pressure point is superposed on each
pressure point applied in the reservoir. That is, for a pressure point in the reservoir at
(r,, H) there is a pressure point of equal magnitude and opposite sign applied at the
fictitious point (1,9, -H).

The displacements at points below the surface may be determined using a similar
procedure. For a generic point (r, 0, z) with 0 <z < H, and a pressure point (with Ap and

VOL) at (RG -cos(9), RG -sin(9), H), the corresponding fictitious pressure point is
located at (RG -cos(9), RG -sin(), - H) Let 1 be the subscript for the pressure point in

the reservoir and 2 be the subscript for the fictitious pressure point. Now, referring to
Equations 20, 21 and 22,

Ax, =1 - RG-cos(9)
Ay, = - RG-sin(9)

Az, =z-H
RR =1’ + RG’ + (z - H)’ B1-B6
RDR, = 2 RG

RR

S’ =RR*-(1-RDR, -cos(9))

Ax, =1 - RG-cos(9)
Ay, = - RG-sin(9)

Az,=z+H
RR,” =1* + RG’ + (z + H) B7-BI12
RDR, =—2'r'RzG

RR

2

S,> =RR,’-(1-RDR, -cos(9))
When Equation 19 is taken into account and U is defined as,

u=2+v) AP o

B13
&7 E

The displacement at (r, 0, z) is given by,



16

u = &A% )y B14
s St
Ay, Ay
u, = S_l';__S 2 |- U B15
1 2
Az Az
u, = S_l*;_sl-i ‘U B16
1 2

The above equations in this Addendum show that the displacement components
corresponding to a specific value of RG may all be expressed in the form,

u. = Ay B,; ~cos(9)
l (1-RD, -cos(f}))l'5 (1-RD, -c:os(f}))l'5 B17
Ay B,; -cos(9) i=x,y,7

' (1-RD,; -cos(9) )1'5 * (1-RD,, -cos(f}))l‘5

Consequently, the integrals given in Equations A10, A11 and A12 may be applied to
determine the displacements at points below the surface.
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