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INTRODUCTION

Many structural engineers and machine designers who are well versed in strength
of materials techniques have little opportunity to use potential theory (i.e. — solutions
governed by Laplace’s equation). This report is an attempt to make one of the
applications of potential theory in elasticity more clear. A modest background in complex
functions is assumed, including the Cauchy Residue and Integral Theorems. For almost
100 years the two dimensional mathematical theory of elasticity has employed complex
variable theory to obtain solutions to certain, specific problems. One application that has
developed is for thin infinite plates containing holes of finite extent. Another application
is in fracture mechanics for sharp cracks in plates. A technique that addresses such
problems is reviewed in this report. This technique is often referred to as the method of
Muskhelishvili (Reference 1). Only the problem of a hole in an infinite plate is reviewed
here. The stresses at infinity vanish and the loads on the hole boundary are self
equilibrating. The coordinate systems defined in Reference 2 are adopted for this report.

This method is based on the biharmonic stress function familiar in two-
dimensional elasticity and known as the Airy stress function, ®. When this function
satisfies the biharmonic equation ( V*@ = 0 ), it can be used to find a stress field that is
a solution to the elasticity governing equations (Reference 2, Chapter 2) as (in Cartesian
coordinates),
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Any function satisfying the biharmonic equation can, in general, be replaced by two
complex harmonic functions, g(z) and g»(z), satisfying Laplace’s equation (
V3g,(z) =0, V?g,(z) =0) with z=x+i-y. Then,

o =Re[z-g1(z)+g2(z)] =%-(Z-gl(z)+g2(z)+z-g1(2)+g2(2))

where Re designates real part and Z is the conjugate of z (Z=x-i-y). A proof of the
above result is given in both References 1 and 2. A general result that is useful here is,

o® . 0D s '(Z)+2.'(z
7+1-7=g1(2)+2'g1 (Z)+g2 (Z)
ox dy

The boundary conditions for the two harmonic functions can be formulated in a
straightforward way. The next step is to determine a conformal mapping that converts the
hole boundary to the unit circle. For each of the two functions the Cauchy residue



theorem and other properties of complex functions are used to find the solutions for the
functions outside the hole. Once the two functions are found the stresses and
displacements can be determined directly.

The primary reference for this method is Reference 1. It is exhaustive and
mathematically oriented. An elementary formulation more easily comprehended by most
engineers is presented in Reference 2, Chapter 6. Reference 3 presents the required
complex variable basis in a presentation that is easy to understand.

The following section and Appendix A of this report give a detailed description
for the solution of a thin infinite plate with a hole, vanishing stress at infinity and a self
equilibrating loading on the hole boundary. The subsequent section contains an
illustrative example of the circular hole. The last section gives, as a second illustrative
example, a case of an elliptical hole.

Appendix B contains a FORTRAN source code and illustrative input data file for
a program that determines stresses and displacements for the elliptical hole problem
considered here.

A special effort has been made in the preparation of this text to make it easy to
follow and understand. The result is that many redundancies appear below that are not
usually present in contemporary technical literature. In other words, this presentation is
intended to be a pedagogical document.



DESCRIPTION OF THE METHOD OF MUSKHELISHVILI

Familiarity with the Cauchy residue theorem is assumed in the following. This
theorem for a complex harmonic function f(z) of a complex argument with pole
singularities only inside a generic boundary is given by,

§Cf(z)-dz =2-n-i-iRes(ak)

Resa, = a1t

z=a,

where ay is the location in the z-plane of the k™ pole and my is its order. Recall that
(0)! = 1. More precisely, if C is the boundary of a region in which f(z) is analytic except

at a finite number of poles, then J-C f(z)-dz isgivenby 2-n-i times the sum of the
residues of f(z) in the region.

A second important result is that if a function f(z) is analytic everywhere outside

of a region C then,
flo)-d ) .
ffCM =-2-7n-i-f(z) zoutside of C

o—Z
where ¢ defines the boundary for the contour integration.

The problems described here are for thin, plates of infinite extent with single
holes (plane stress conditions are assumed). The boundary conditions are that the stresses
at infinity vanish and the boundary loads on the hole are self equilibrating (both force and
moment). There is no other loading on the plate.

The first step, often the most challenging step, is to find the conformal mapping
function that maps the hole boundary in the z-plane into the unit circle in the {-plane.
The z-plane is the physical plane and the {-plane is the mapped plane where,

z=X+i-y=r-e" zZ=x—1-y=r-e" &zarctan(zj
X

(=E+in=p-e® C=f—in=pe™ e=arctan[2]

In the mapped plane the hole boundary whose radius equals one is,

i-0
=c=¢'

C

boundary



This mapping from the {-plane to the z-plane is expressed as,
z=o(g)
where the boundary of the hole, | vounaar , is given by,

z = o(e™)

boundary

Consider a point E on a line in the z-plane defined by & = constant. The angle the
normal to this line at E makes with the x-axis for increasing  is defined as o. When

o({) is specified, tan(o) may be easily found. Let the function F(x,y) = 0 define the hole
boundary in the z-plane. Then,

9F(x,y)
aF(X’Y).dX+aF(X’Y)-dy=0 N dy _ _ ox —tan| g - T __
ox dy dx M 2 ) tan(o)
dy

The last equation gives the normal direction angle at point E, o, and the conformal
mapping function, ®({), is used to convert the result to a(C). Also note that in terms of
arc length, s, along the & = constant line,

d—X:sin(a), ﬂzcos(a)
ds ds

As an example of finding o, the mapping for a circle of radius R in the z-plane is,
z=R-e' =0)(§)=R~Q=Rop'ei‘e
Flx,y)=x"+y’ -R’
dx+i-dy=R-p-i-e” =i-R-p-(cos(0) +i-sin(0))-dO
dx=-R-p-sin(6)-d6, dy=R-p-cos(6)-d6

-1 _d_yz_cos(e)= -1 L anlal = tan .
tan(a)_dx sin(6)  tan(0) tan(a) = tan(6) , 0

Note that for a circular hole in the z-plane a is independent of p.

As a second example, the mapping for an ellipse is, with,



major axis in x-direction = R +(1+m), minor axis in y-direction = R -(1—-m)
—i-0
z=R-e" =a(()=R:|{+=> |=R:[p-e™ + T
G p
2 2 2
F(X7Y): X >t Y 2—R2 - d—X:—(1+m)2~Z:—tan(a)
(1+m)> (1-m) dy (1-m)* x
m 0 m
2 T . 2 I
S tan(a) = (1+m)2 Im(2) _ (1+m)2 _p sin(6) _ (1+m)2 P tane)
(1-m)* Re(z) (1-m) p+g cos(0) (1-m) p+g
p p
m
1’1’1)2 p——
— o = arctan > P tan(0)
p

For the ellipse the value of o depends on p and 6. On the boundary of the hole (p =1),

_1+m

boundary 1—m

tan(a) tan(0) — o

= arctan[1 tm. tan(@)}

boundary m

The next step in the method of Muskhelishvili uses the loading on the hole
boundary to find the real functions Fx(s), Fy(s) and M, the forces and moment, as,

where s is length measured along the hole boundary and the integrations are in the z-
plane. The details of the M(s) integration are not given here as M(s) in not used
explicitly in this report. The integrals are force and moment components on the hole



boundary between the two points A and B. For the problems considered here the
boundary point A is taken at o = 0 and point B is taken as a generic value of increased o.
In general, F«(s) and F,(s) are real and depend on position along the boundary in the z-
plane. The conformal mapping function ®(G) can be used to express these forces as
functions of 6. That is, as F(c) and F,(c) and define,

=—i-[o(z) +z-9'(z) + (2]}

f(o) =i-(Fx(0)+i'Fy("))=_i'[a® +i'a®}

ox dy
This last equation is the form for the loading used in this procedure.

The two harmonic functions that determine the solution are @(z) and y(z). These
functions are used to determine the stresses and displacements as follows.

6. to, = 4-Re[(p'(z)]

24-
e io

6,—6,+2-1-1,=2 -[2-(p"(z)+\|1'(z)]

2-G~(ug —i-un)=e“x -[i;—:'@(i)—z'(r"(l)—\lf(z)}

where G is the shear modulus and v is Poisson’s ratio for the material. In this report a
prime symbol on a function implies taking the derivative of the function with respect to
its argument. The sketch below shows the positive convention for stresses z, G, and Tz,.
The corresponding displacements are us and u, directed in the increasing coordinate
direction. All of the above equations are for the plane stress condition. Every elasticity

_V .
in the
1+v

textbook shows the equations for plane strain are obtained by replacing

above equations by 3—4-v.

7 = constant




The expressions for the stresses and displacements given above contain ¢(z) and

its derivatives so that the mapping function z = ®({) is used to change the variable. For
example,

do(z) _delwlg) .y 9 _ | 1

9z 92 —@(C)'E—Q(C)'m

O olz) _ 3 ( et 1o (o) L o)L ). 2O
o -az[m@) . C)] ag(‘”@) . c))w'(z;) 010 ol T
also,

dylz) _avlolg)) _ . 9L _ 1

Y - o, —W(C)‘E—W(C)‘m

The values of F and Fy can be expressed in terms of ¢(z) and y(z) as shown
above,

F +i-F, =-i-[olz) +2-9(2) + ¥(Z)|; =i f(o]
so that on the hole boundary in the {-plane,

%) +9(o) = 1lo

olo) +

When both harmonic functions are known the equations given above can be used
to find the stresses and displacements. It is clear that this application requires only that
appropriate Fy, Fy and o({) be specified; the rest is mathematical manipulation.

In order to determine @({) and () the boundary conditions must be imposed.
The last equation above is the first part of the boundary conditions. The other part of the
boundary conditions is the conjugate of the last equation which is,

%L ¢'(o) +ylo) = ()



Let £ be a point outside the unit circle in the {-plane. The procedure for finding
¢(€) and y({) is to divide each of the last two equations by ¢ — { and then integrate
around the unit circle. The two resulting equations are,

olo)-do 03(0)@'(6)@6 W(E)-dcs_ flo)-do
ot o ot ¥ ot he
A

9(c) do , (®(5) ¢'(o)-do rylo)-do _ (f(5)-do
Ei;Y c—C f#;”D'(G) 6—G fﬁ c-G i °-§
B

The Cauchy theorems are used to evaluate the terms in Equations A and B. These
evaluations are described in Appendix A of this report. The resulting equations are,

_ 1 f(o)-do
@(C)——z.n‘i'i p—r:

1 ¢flg)ds 1 rals) -g'lo)
vid)= 2-n-i! oc—C +2-7r-i !0)'(0) o—C do

When f(6) and () are specified, the first equation determines @({) and then the second
equation determines W({). The stresses and displacements are found using equations
given above.



UNLOADED CIRCULAR HOLE BOUNDARY IN AN INFINITE PLATE WITH
TENSION IN THE X-DIRECTION AT INFINITY

Consider first the plate without the hole. The only non-vanishing stress
component everywhere is the normal stress in the x-direction, 6xO. The center for the
hole is at the origin of the x, y coordinates and its radius is R. When the hole is
introduced the stresses will be unaltered in the remainder of the plate if the hole boundary
has the following stresses applied, in r- & polar coordinates (note that & is measured
positive clockwise from the positive x-direction),

c. =%-GXO'(1+COS(2'(AX))

T,.,=—2-6,0-sin(2-a)

né

and the hoop stress, G,, at the hole boundary is,

o, =1.6.0-(1-cos(2-&)

If the negatives of 6: and T, are superposed on the hole boundary, the boundary loading
vanishes and the desired stress distribution is achieved.

The Muskhelishvili procedure is applied in this section to remove the above hole
boundary loads while ensuring the stress at infinity is maintained at the x-direction
tension. In other words, except for G, the stresses resulting from this procedure after
superposing all vanish at infinity.

The conformal mapping that maps a circle in the z-plane (complex plane) into
another circle in the {-plane is,

Z:X+i~y=r-e"a C=§+i~n=p-ei'0
z=o0(f)=R-¢

The objective here is to map z for the hole boundary of radius R onto the unit circle
defined by o = e so that p = 1 and from Page 4, o = 6. Therefore the boundary
mapping is,

z =w(lc)=R-c=R-e'

hole boundary

In the following procedure the loads on the hole boundary are defined in terms of
X and Y, the forces per unit boundary length as described earlier. Let s be a curvilinear
coordinate along the hole boundary ( s is a complex number along the hole boundary in
the z-plane), then,



Integral of force vector in x-direction between points Aand B = F, =

P> e T
X
[oN
wn

Integral of force vector in y-direction between points Aand B =F, = -ds

P> e, T
=

For this problem the hole is a closed boundary and there is symmetry about the x-axis.

10

F\ and F, are determined choosing o = 0 for point A and a generic value of a for point B

so that,

s(a)
F, = J(cx ~cos(0c)+1:xy -sin(a))-ds
s=0

1.6, 0-R- T[(l-i—cos(Z-a)) -cos(a) —sin(2- a)-sin(a)]- do

=6 ,0-R sin(a

s(a)
F, = (csx-sin(a)—txy-cos(a))-ds
s=0
0
=1-6,0-R- J-[(1+cos(2-a))-sin((x) +sin(2-a)-cos(ot)]-d0c
0=0
=0
and then,
. . e —e 1 1
F . +1-F, =6,0-R -sin(a) =GXO~R~—'=—'-GXO~R~[G——]
21 2-1 c

The negative of this boundary loading is applied and the Muskhelishvili procedure is
used to find the solution to this auxiliary problem.

The first step is to define f(o) corresponding to the boundary loading as,

f(o) =—i-(F, +i-Fy)=—%ocXO-R~(c—lj
(¢}

This boundary loading is now used in the following integral and Cauchy’s residue

theorem is applied to obtain the first of the two potential functions, @(), required for the

solution,



11

=0

The second potential function, y(C), is found using,

f(a):f(é]:_g.cxoa.[é_c]

in the definition of y({) which is,

1 ¢flg)ds 1 rals) -¢g'o)
WC)_ 2~n-i! c—C +2-7r-i !0)’(0) c— do
and
olg) _~_1
w'(o) c

so that, after using Cauchy’s residue theorem,

W(C)=E'GXO'R'@+;j

The first term in the above equation is from the first integral and the integration is

analogous to the integration for ¢(c) while the second term is from the second integral
that has a third order pole (my = 3) at 6 = 0 so the residue is obtained as follows,

e ] o2k

:_%'GXO'R‘[
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This determination of the potential functions, @({) and y({), completes the formal part of
the Muskhelishvili procedure.

The final step is to determine the stresses and displacements with the following
equations,

6. +0, = 4-Re[(p'(z)]

6,0, +2-1-T, =2.e% ~[2~(p"(z) +\|/'(z)]

where,

o = clockwise angle from the x-axis to the outward normal to § = constant line in
z-plane
= 0 in this problem as was shown earlier

A prime indicates differentiation with respect to the indicated independent variable, that
is,

©’(2) = (g 28 -2l

0”(2) = ¢"(¢) (ag] Lorlg) 28 _e(g)

oz oz° R?
() = w'(€) 98 _ v'(¢)
‘l’ (Z)_ 9z R

2.

< e or(0) + ()

6, —0,+2-i-1, =
n & né R

3—v'_— =
1+v

2~G-(ué—i-un)=ei'°-[

Substituting @({) and y({) into the three above equations, eliminating L usingz= R - |
and setting z =r-e"* yields,
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2 2

1 R i R
o, +o0, :—2~0XO-R6[C—2}:—2-GXO-R{—2~62’1'“}:—2~0x0-—-cos(2~0¢)

2
T T

2.

6,0, +2-1-1, = R

R? R? R*) ..
=6 0| —+|2-— -3 — |
X |:r2 [ rz r4j

R’ R> _ R! . (, R* _ RY) .
ZGXO-H:—Z+[2-—2—3~—4]~COS(2~0L) —1~(2-—2—3-—4]~sm(2~a)}
r r r | r r

= i s vilo0 e e -2

2
F-(1+i'cos(2-a)j—R—2-cos(a)}
cOR |l T 1+v r
<

’ +i-F-(—1+2-1_—V-sin(2-a)j—R—;-sin(a)]

r l+v r

The three equations above are used to find 6z, Gy, Ty, Uy and ug which are to be

superposed on the conditions prevailing without the hole given earlier with the following
results,

R’ R*
c.=306,0- —2'(-1—4-COS(2-0L)+3‘—4-COS(2'0L):|
r r

R? R*
() :%'GXO' r—2—3'r—4‘COS(2'G)]

2 4
T, :_%.Gxo.(z.R_z_3.R—4]osin(2~0€)
r r

.0-R |[R 2

4 R
2-G-u, =2 f—+]1+——-cos(2-0) |-——-cos |(a
e 2 { ( Ty )j r? | )}

T
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. _ 2
2-G~un=—"—-{—-[1—2-l—v-sin(2~a))+R—2-sin(a)}
1+v r

When the above stresses are added to the stresses in the first three equations of
this section, the desired stresses are found and given below,

2 2 4
o, 2%'6){0'{1—1:—2+COS(2'0L)-(1-4-1:—2+3-R—4H

Tr
R? R*
G, :%-GXO-{1+r—2—cos(2-a)-(1+3-r—4ﬂ

2 4
T, =_%-cxo-[l+2-lj—2—3-1:—4]-sin(2~a)

The displacement field given above contains a rigid body motion that does not
contribute to the strains and is omitted below. In addition, the displacements owing to the
uniform strain field caused by the uniform stress field, 6O, are not included below. With
these provisions the displacements are,

2.G-u =—x N
2

6.0-R R 1
1+v

+i'cos(2‘a))

2-G-u, :—;-—'[—1+2-:—i'sin(2~a))
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UNLOADED ELLIPTICAL HOLE BOUNDARY IN AN INFINITE PLATE WITH
TENSION IN THE X-DIRECTION AT INFINITY

A mapping that takes an ellipse in the z-plane to a unit circle in the {-plane is,

z=0[()=R- (C + %]E r-e't a= arctan( Im(z) ]z arctan(zj

Re(z) X

where the ellipse has a semi-axis of length R -(1+m) in the x-direction and its other
semi-axis has a length of R -(1—m) in the y-direction. The radius r and the angle & are
the usual polar coordinates in the z-plane. Since the hole boundary in the {-plane is

e = o, the hole boundary in the z-plane is given by,

Z boundary = 0)(6) = R[O--i-g)

o

A few useful results for this problem are,

mv(c)=R.(1_£2]

o'(o) =R 2(;“
6(6):R-(é+m-oj
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_m
em? "
o = arctan F— -tan(0) (from Page 5)
“mf L m
P

The stresses on the boundary before the elliptical hole is introduced are,

o, =1.6.0-(1+cos(2-a))

To =-1.6,0-sin(2-q)

and the hoop stress at the hole boundary is,
o, =1.6,0-(1-cos(2-a))

Rather than follow the integrating procedure employed for the previous problem to obtain
F, +1-F, advantage is taken of an obvious “shortcut” given by,

R
F.+iF,=0,0 . 7 )=%Y .[Mﬂ_l_m.cj

—_— Z —
. boundas bounda
2-i undn e 2-i 6 ©

so that,

f(o) =—i-(F, “'Fy):—%'GXO'R-(I—m)-(c—é]

and,

f(E):—%~0XO-R-(1—m)-(é—c]

The equation giving @({) may be determined now by using the Cauchy residue theorem
as follows,

—;cXO-R-(l—m)(c—lj-dc

olt)=———

. 1.
. 2 X
2-mei o c—-_

The above integral has a simple pole (mx = 1) at 6 = 0 giving,



c=0

=—1l.5 O~R-(1—m)~l
g
then
1
o0 ==40,0-R-(1-m] - -
and,

The equation giving y() is determined as follows.

_ 1 (fl6)-do 1 ol5) -¢o)
vl = 2'n-i-y[ c—C +2-Tc-i !co'(c) 6—C do
=-§-6X0-R-(1—m)-l+g-cxo-R-(1—m) (”T'Cz)
g 8" -m

sl

so that,

3z . oz 32> g
The following results are useful,

07 _ o) - o1

a 9z (¢

17
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¢ e'g) 9¢_ o'
0z’ (oa'(@))2 0z (CO'(C))3

so that for the current function w({),

?)C:l and ggz - _ 2-m .
R.(l_;j z Rz'(c‘@
Now,
oQ)=1-6.0-R-(1-m) -+
g
¢(2)=-16,0 R-(1-m)- & — L
R'[l—‘f]
g
(P”(Z)=GXO R (1—m)~—3 1 ~-1.6,0-R (1-=m) L 2-m . 1
g R2. 1_2 g R2. C_E R-[l—r?]
¢ ¢ ¢

The stresses and displacements may be found using the above results in,
6. +o, = 4-Re[(p'(z)]

2.
e ia

6,—6,+2-1-1,=2 ~[2-(p"(z)+\y'(z)]

26l ivuy = 3V (a7 -l

In the preceding problem having a circular hole the results were reduced to real
expressions for the individual stress and displacement components. For this problem the
same procedure would involve considerable algebraic manipulation so a different scheme
is recommended and employed here. Most computer compilers are written to
accommodate complex numbers. The last three equations are expressed in terms of z,
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0(2), ©’(2), 9”(z), Y(z) and y’(z). The functions @(z) and y(z) are related to @({) and
y(£) through the conformal mapping w(¢) so all of the functions appearing in the
equations for the stress and displacements are known in terms of equations containing
complex numbers. When these stresses are found, the stresses for the uniform x-direction
normal stress given on page 16 must be added to determine the total stresses and thus the
desired solution. The displacements reported here are for the imposed hole boundary
stresses and do not include displacements associated with the uniform x-direction stress.

The appendix to this report contains a source listing for a FORTRAN program,
MUSKZ2, which determines the stress and displacement components as described above
when the following input data are read from a file.

R = mean semi-axis length in z-plane
M = m = ellipse parameter (-1 <M < 1), M = 0 for a circular hole
SXO = 0,0 =uniform, x-direction normal stress at infinity

RHO = p =radius in {- plane, (§, 1 plane), (RHO = 1), RHO = 1 for hole boundary
NU  =v=Poisson’s ratio

The following three figures are from data generated by the computer program for the case
where.

R =1.0
M =(.3333
SXO =10.0
RHO =1.0
NU =023
HOLE BOUNDARIES IN Z-PLANE AND IN ¢-PLANF
1.0 —
0.9 \\
' N ¢-PLANE
0.8
0.7 ™
0.6 T
05 Z-PLANE T
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0.4 M =0.3333 N\ N
' RHO =1 \ \\
0.3 \ \
0.2 \
01 \
)
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RESULTING STRESSES AT HOLE BOUNDARY gz, gn & 1 VERSUS ANGULAR

COORDINATE
/
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on = NORMAL STRESS IN , DIRECTION
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(SHEAR MODULUS)*(DISPLACEMENTS) VERSUS ANGULAR COORDINATE

IR
\\G*u" R=1.0
3 u, = DISPLACEMENT IN o DIRECTION — [ "S"Xzoffg% —
\ ug = PERPENDICULAR DISPLACEMENT RHO = 1.
2 o .
N NU=0.3

0
R \\ |

-3 \Q /
0 4

0 10 20 3 0 50 60 70 80 9

ANGLUILAR COORDINATE. dedarees

The ratio of o¢ at the hole boundary (p = 1) and 6 = 90° to the uniform tension at infinity
is usually called the stress concentration factor. Mechanical design textbooks always
give this factor for a circular hole. For the circular hole it is 3.0. The plot below is based
on computer runs for different values of the ellipse parameter in the range -1 <M < 1 and
for unit tension at infinity. When m = 0, the ellipse becomes a circle. The plot shows
that the stresses can become large at the boundaries of elliptical holes.

HOOP STRESS AT 5 =1 AND g = 0 & 90 degrees VERSUS ELLIPSE PARAMETFR
MAJOR AXIS RATIO (X/Y) = (1+M) / (1-M)

40

36
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20 RHO =1

\

16
\9 =90 degrees
12 \
8 \\

o = 0 degrees
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APPENDIX A - EVALUATION OF INTEGRALS IN EQUATIONS AAND B

1.

(p(c)'dcs_l_ olo) .6'(6)-d0+ W(E)-dcs: flo)-do
Vot Yam ot Vot hat
A

¢(c)-do (o) .(p'(cs)-dcs \V(G)-dc_ f(5)-do
b ot o ot hec ho

B

Integrals independent of mapping function, ®({):

-d .
fﬁ % =—2-m-i-9(¢) ¢(0) analytic outside of contour
y(o)-do . . .
i G——C =—2-m-i-y(() y(0) analytic outside of contour
4, a, 1 2 .
(P(C) =—+t=+, \II(C) =—+—* - Laurent Expansions
¢ G ¢ ¢
a, a
olo)==L+=2+
6 o
2 ” _
¢'(o) —a—'z— ?2 , ¢'o)=-2,-0"-2-3,-6° +--
o o
R ¥ B l_l i-0 . . .
C=p-e” .C=p-e S e p > 1 in material region
olg)=2r. e +a—§-ez'i'e Fo, YT =t +a—§'e“e +..
Y P p
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25

Integrals for ellipse mapping function

z=w(§)=R-[C+?],a)(c)=R-[c+m],w(0)=R~(1+m~0j

oo) 1 o’+m o) 1+m-o’
©'(6) o l-m-c? o'(o) 6’ -m
For Equation A:

2

-do

fi; 6’ +m ‘6'(6)'d6_§ 6’ +m —a,-6-2-a,-0
1-m-6®> o-lc-( H-m-c? c—C(

The integrand for the above integral is analytic inside the y region so the integral
vanishes and Equation A gives,

1 f(o)-do
(P(C)__z.n.ilj.v c—_
For Equation B:
fl€1+m~cs2 o@lo)de_ L, g emel g
" 6> —m c—¢C Cz—m

Since the integrand is analytic in the material region, Equation B becomes,

1 J-E(E)'dc_1+m-cz.
" o= C-m

yl(g) =- ¢-¢'(¢) (for the circle m = 0)

2‘7‘C~i.
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APPENDIX B, FORTRAN SOURCE CODE AND ILLUSTRATIVE INPUT FILE

FOR PROGRAM MUSK2

SOURCE CODE:

(@)

oloNoNololoNolololoRololololoNoNolololololoNoNoNoRoNoNoNoRoloNoNo o oo No oo Ro oo Ro N oo RO NO N

PROGRAM MUSK2

JUNE 26, 2015

FINDS STRESSES AND DISPLACEMENTS FOR ELLIPTICAL HOLE IN AN
INFINITE PLATE WITH UNIFORM AXIAL STRESS IN X-DIRECTION AT
INFINITY.

MEAN SEMI-AXIS LENGTH =R

X-DIRECTION SEMI-AXIS LENGTH = (1+M)*R

Y-DIRECTION SEMI-AXIS LENGTH = (1-M)*R

INPUT DATA:
R = MEAN SEMI-AXIS LENGTH
M = ELLIPSE PARAMETER

SXO  =UNIFORM TENSILE STRESS AT INFINITY
RHO =RADIUS IN XI-ETAPLANE, =1 ON HOLE BOUNDARY
NU  =POISSON'S RATIO

OUTPUT DATA:
TABULATION FOR THETA =0 TO THETA = 0.5*PI OF,

THETA =ANGLE TO POINT IN XI-ETA PLANE, deg

X = COORDINATE IN X-DIRECTION IN X-Y PLANE

Y  =COORDINATE IN Y-DIRECTION IN X-Y PLANE

ALT =ANGLE IN Z-PLANE TO NORMAL FROM X-DIRECTION, deg

XI = COORDINATE IN X-DIRECTION IN XI-ETA PLANE

ETA =COORDINATE IN Y-DIRECTION IN XI-ETA PLANE

SXI =EXTRANORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
SETA =EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
TAU =EXTRA SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION
GUXI = (SHEAR MODULUS)*(DISPLACEMENT IN NORMAL DIRECTION)
GUETA = (SHEAR MODULUS)*(DISPLACEMENT IN NORMAL DIRECTION)
STXI =TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
STETA =TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
TAUT =TOTAL SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION
R(PHI) = REAL(PHI)

I(PHI) = IMAG(PHI)

R(PHIP) = REAL(PHIP)

I(PHIP) = IMAG(PHIP)

R(PHIPP)= REAL(PHIPP)

I(PHIPP)= IMAG(PHIPP)

R(CHI) = REAL(CHI)

I(CHI) = IMAG(CHI)

R(CHIP) = REAL(CHIP)
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C

I(CHIP) = IMAG(CHIP)
ANGZ = ANGULAR COORDINATE IN Z-PLANE = ATAN(Y/X)

IMPLICIT
* NONE

REAL

* R, M, SXO, RHO, NU,

* PI, RAT, FACU, XI, ETA, ALF, ANGZ, SUM, DIFF, X, Y, RHOR,

* THETA, SXI, SETA, TAU, GUXI, GUETA, STXI, STETA, TAUT

COMPLEX

* PSI, Z, PHI, WRT1, WRT2, PHIP, PHIPP, CHI, CHIP, COMB, GU,
* EALF1, EALF2

INTEGER
*1

OPEN (2,FILE='MUSK2.INP',STATUS="OLD',ACCESS='"SEQUENTIAL',
*  FORM=FORMATTED")

OPEN (3,FILE="MUSK2.0UT',STATUS="UNKNOWN', ACCESS='SEQUENTIAL',
*  FORM=FORMATTED")

READ (2,*) R

READ (2,*) M

READ (2,*) SXO

READ (2,*) RHO

READ (2,*) NU

IF (RHO .LT. 1.) THEN

PRINT *, RHO MUST BE > 1, PROBLEM ABORTED'
STOP

END IF

WRITE (3,1000)
* R, M, SXO, RHO, NU

1000 FORMAT (

*1X,'OUTPUT DATA FILE FOR PROGRAM MUSK?2, JUNE 23, 2015',//,
*2X,'INPUT DATA:',/,

*3X,R =MEAN LENGTH FOR SEMI-AXES ='G12.4,/,
*3X,M = ELLIPSE PARAMETER ='G12.4,,

#3X,'SXO = X-DIRECTION TENSION AT INFINITY  =',G12.4,,
*3X,RHO =RADIUS IN XI, ETA COORDINATES  ='G12.4,/,
*3X,NU = RATIO OF POISSON ="'G12.4,//,
*3X,'MAJOR AXIS = (1+M)*R, MINOR AXIS = (1-M)*R",//,
*2X,'OUTPUT DATA:'//,

*3X,'IN TABULATION BELOW,//,
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*4X,'THETA = CW ANGLE FROM XI DIRECTION IN PSI-PLANE, deg'/,

#4X,’X = X-COORDINATE IN Z-PLANE!/,

#4X'Y =Y-COORDINATE IN Z-PLANE'/,

*4X'ALF =CW ANGLE OF NORMAL FROM X DIRECT. IN Z-PLANE, deg',/,
#4X,'XI = XI-COORDINATE IN PSI-PLANE!,,

*4X'ETA = ETA-COORDINATE IN PSI-PLANE',/,

#4X,'SXI =EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
*4X'SETA = EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
#4X,TAU = EXTRA SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION'/,
#4X,'GUXI = EXTRA (SHEAR MODULUS)*(XI NORMAL DISPLACEMENT)/,
*4X 'GUETA = EXTRA (SHEAR MODULUS)*(ETA NORMAL DISPLACEMENT)',/,
#4X'STXI = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
*4X,'STETA = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION'/,
*4X, TAUT =TOTAL SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION'/,
*4X,'R(PHI) = REAL(PHI)"/,

*4X,'I(PHI) = IMAG(PHI)',/,

*4X 'R(PHIP) = REAL(PHIP)',/,

*4X 'I(PHIP) = IMAG(PHIP)',,

*4X,'R(PHIPP)= REAL(PHIPP)'/,

*4X,'I(PHIPP)= IMAG(PHIPP)',/,

*4X,'R(CHI) = REAL(CHL)'/,

*4X,'[(CHI) = IMAG(CHI),

*4X,'R(CHIP) = REAL(CHIP)',/,

*4X '[(CHIP) = IMAG(CHIP)',/,

*4X,'ANGZ = ANGULAR COORDINATE IN Z-PLANE',//,

*1X,4X, THETA',4X,6X,X",6X,6X,'Y",6X,5X,'ALF',5X,6X,'XI',5X,
*5X,'ETA",5X,5X,'SXI',5X,5X,'SETA',4X,5X, TAU",5X,
*5X,'GUXI',4X,4X,'GUETA'4X,5X,'STXI',4X,4X,'STETA" 4X,
*5X,'TAUT',4X,4X,'R(PHI)',3X,4X, I(PHI),3X,3X, R(PHIP)',3X,
*3X,'I(PHIP)',3X,3X,'R(PHIPP)',2X,3X, I(PHIPP)',2X,4X,'R(CHI)', 3X,

*4X '[(CHI),3X,3X,'R(CHIP)',3X,3X, I(CHIP)'3X,5X,/ANGZ',/)

PI = 4. * ATAN(1.0)
RAT = ((1. + M)/(1. - M))**2
RHOR = (RHO + M / RHO) / (RHO - M / RHO)
FACU = (3. - NU) / (1. + NU)
DO 1001=1, 51
THETA IS A COORDINATE IN THE PSI-PLANE, PSI = XI + {*ETA
THETA=0.5*PL * (I- 1.)/ 50.
IF (THETA .GE. 0.5*PI) THEN
XI=0.
ETA=RHO
ELSE

XI =RHO * COS(THETA)
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ETA=RHO * SIN(THETA)
END IF

PSI IS COMPLEX COORDINATE IN PSI-PLANE
PSI = CMPLX(XI, ETA)

Z = COMPLEX COORDINATE IN Z-PLANE, Z = X + i*Y
OBTAIN USING CONFORMAL MAPPING FOR AN ELLIPSE

Z=R*PSI+M * R /PSI
X =REAL(Z)
Y = AIMAG(Z)
ANGZ = ANGULAR COORDINATE IN Z-PLANE
IF (X .EQ. 0.) THEN
ANGZ = 0.5 * PI
ELSE
ANGZ = ATAN(Y / X)

END IF

ALF = CW ANGLE FROM X-DIRECTION TO NORMAL IN Z-PLANE

IF (ANGZ .LE. 0.) THEN
ALF=0
ELSE IF (ANGZ .GE. 0.999 * 0.5 * PI) THEN
ALF = 0.5 * PI
ELSE

ALF = ATAN(RAT * TAN(THETA) / RHOR)
END IF

EALF1 = COMPLEX CW ROTATION OF ALF
EALF1 = CMPLX(COS(ALF), SIN(ALF))

EALF2 = COMPLEX CW ROTATION OF 2*ALF
EALF2 = CMPLX(COS(2.*ALF), SIN(2.*ALF))

F'(Z) = F'((PSI) * WRTI
F"(Z) = F"(PSI) * (WRT1**2) + F'(PSI) * WRT2
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WRTI = 1./ (R * (1. - M / (PSI¥*2)))

WRT2 = -2. * M/ (R**2) * ((PSI - M / PSI)**3))

GET DERIVATIVES WITH RESPECT TO Z FOR PHI, PHIP AND CHI
PHI = 0.5 * SXO * R * (1. - M) / PSI

PHIP = -0.5 *SXO * R * ((1. - M) / (PSI**2)) * WRTI

PHIPP = (SXO * R * (1. - M) / (PSI**3)) * (WRT1#%2)
*  .0.5%SXO *R *((1. - M) / (PSI**2)) * WRT2

CHI=0.5* SXO * R * (1.- M) *
*((1. + M * (PSI**2)) / (PSI * ((PSI**2) - M) ) - 1./ PSI)

CHIP = (0.5 *SXO * R * (1. - M) / (PSI**2 * ((PSI**2 - M)**2)))
£ % (2, % M * (PSI**2) * (PSI**2 - M)
* (3. % (PSI**2) - M) * (1. + M * (PSI**2))
* 4+ (PSI**2 - M)**2) * WRTI
SUM = SXI + SETA
SUM = 4. * REAL(PHIP)
COMB = SXI - SETA + 2*i*TAU
COMB = 2. * EALF2 * (CONIG(Z) * PHIPP + CHIP)
DIFF = REAL(COMB)
TAU, SXI & SETA ARE STRESSES TO BE SUPERPOSED ON INITIAL TENSION
TAU = 0.5 * AIMAG(COMB)
SXI=0.5 * (SUM - DIFF)
SETA = 0.5 * (SUM + DIFF)
STXI, STETA & TAUT ARE ACTUAL STRESSES AFTER SUPERPOSITION
STXI = SXI + 0.5 * SXO * (1. + COS(2.*ALF))
STETA = SETA + 0.5 * SXO * (1. - COS(2.*ALF))
TAUT = TAU - 0.5 * SXO * SIN(2.*ALF)
GU = (SHEAR MODULUS)*(UXI + i*UETA), UXI & UETA ARE DISPLACEMENTS
GU = 0.5 * EALF1 * (FACU * CONJG(PHI) - CONJG(Z) * PHIP - CHI)
GUXI = REAL(GU)

GUETA = -AIMAG(GU)

WRITE (3,1100)
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* THETA*180./PI, REAL(Z), AIMAG(Z), ALF*180./PL, XI, ETA,
* SXI, SETA, TAU, GUXI, GUETA, STXI, STETA, TAUT,
* REAL(PHI), AIMAG(PHI), REAL(PHIP), AIMAG(PHIP), REAL(PHIPP),
* AIMAG(PHIPP), REAL(CHI), AIMAG(CHI), REAL(CHIP), AIMAG(CHIP),
* ANGZ*180./PI

C

1100 FORMAT (
*1X,25(1X,G12.4))

C

100 CONTINUE

C
WRITE (3,1200)

C

1200 FORMAT ( /,
*]X,4X, THETA',4X,6X,X',6X,6X,'Y",6X,5X,'ALF',5X,6X,'XI',5X,
*5X 'ETA',5X,5X,'SXTI',5X,5X,'SETA" 4X,5X, TAU'",5X,
#5X,\GUXI' 4X,4X,'GUETA'4X,5X,'STXI'4X,4X,'STETA' 4X,
*5X, ' TAUT' 4X,4X,'R(PHI)',3X,4X, I(PHI)', 3X,3X, R(PHIP)',3X,
*3X,'[(PHIP)',3X,3X, R(PHIPP)'2X,3X, I[(PHIPP),2X,4X,'R(CHIY, 3X,
#4X,'I(CHI)',3X,3X,R(CHIP)',3X,3X, (CHIP)'3X,5X,'ANGZ

C
END

C

ILLUSTRATIVE INPUT DATA FILE:

l. =R =MEAN LENGTH OF SEMI-AXES
0.3333=M =ELLIPSE PARAMETER

10. = SXO = X-DIRECTION

1. = RHO= RADIUS IN XI-ETA COORDINATES

0.3 =NU = POISSON'S RATIO

THIS IS FILE: Musk1.doc
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