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INTRODUCTION

Many structural engineers and machine designers who are well versed in strength 
of materials techniques have little opportunity to use potential theory (i.e. – solutions 
governed by Laplace’s equation).  This report is an attempt to make one of the 
applications of potential theory in elasticity more clear.  A modest background in complex
functions is assumed, including the Cauchy Residue and Integral Theorems.  For almost 
100 years the two dimensional mathematical theory of elasticity has employed complex 
variable theory to obtain solutions to certain, specific problems.  One application that has 
developed is for thin infinite plates containing holes of finite extent.  Another application 
is in fracture mechanics for sharp cracks in plates.  A technique that addresses such 
problems is reviewed in this report.  This technique is often referred to as the method of 
Muskhelishvili (Reference 1).  Only the problem of a hole in an infinite plate is reviewed 
here.  The stresses at infinity vanish and the loads on the hole boundary are self 
equilibrating.  The coordinate systems defined in Reference 2 are adopted for this report.

This method is based on the biharmonic stress function familiar in two-
dimensional elasticity and known as the Airy stress function, .  When this function  
satisfies the biharmonic equation ( 04   ), it can be used to find a stress field that is
a solution to the elasticity governing equations (Reference 2, Chapter 2) as (in Cartesian 
coordinates),
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 Any function satisfying the biharmonic equation can, in general, be replaced by two 
complex harmonic functions, g1(z) and g2(z), satisfying Laplace’s equation (
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where Re designates real part and z  is the conjugate of z ( yi- xz  ).  A proof of the 
above result is given in both References 1 and 2.  A general result that is useful here is,
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The boundary conditions for the two harmonic functions can be formulated in a 
straightforward way.  The next step is to determine a conformal mapping that converts the
hole boundary to the unit circle.  For each of the two functions the Cauchy residue 
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theorem and other properties of complex functions are used to find the solutions for the 
functions outside the hole.  Once the two functions are found the stresses and 
displacements can be determined directly.

The primary reference for this method is Reference 1.  It is exhaustive and 
mathematically oriented.  An elementary formulation more easily comprehended by most 
engineers is presented in Reference 2, Chapter 6.  Reference 3 presents the required 
complex variable basis in a presentation that is easy to understand.

The following section and Appendix A of this report give a detailed description 
for the solution of a thin infinite plate with a hole, vanishing stress at infinity and a self 
equilibrating loading on the hole boundary.  The subsequent section contains an 
illustrative example of the circular hole.  The last section gives, as a second illustrative 
example, a case of an elliptical hole. 

Appendix B contains a FORTRAN source code and illustrative input data file for 
a program that determines stresses and displacements for the elliptical hole problem 
considered here.

A special effort has been made in the preparation of this text to make it easy to 
follow and understand.  The result is that many redundancies appear below that are not 
usually present in contemporary technical literature.  In other words, this presentation is 
intended to be a pedagogical document.
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DESCRIPTION OF THE METHOD OF MUSKHELISHVILI

Familiarity with the Cauchy residue theorem is assumed in the following.  This 
theorem for a complex harmonic function f(z) of a complex argument with pole 
singularities only inside a generic boundary is given by,
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where ak is the location in the z-plane of the kth pole and mk is its order.  Recall that 
(0)! = 1.  More precisely, if C is the boundary of a region in which f(z) is analytic except 

at a finite number of poles, then  
C

zdf(z)  is given by iπ2   times the sum of the 

residues of f(z) in the region.

A second important result is that if a function f(z) is analytic everywhere outside 
of a region C then,
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where  defines the boundary for the contour integration.

The problems described here are for thin, plates of infinite extent with single 
holes (plane stress conditions are assumed).  The boundary conditions are that the stresses
at infinity vanish and the boundary loads on the hole are self equilibrating (both force and
moment).  There is no other loading on the plate.

The first step, often the most challenging step, is to find the conformal mapping 
function that maps the hole boundary in the z-plane into the unit circle in the -plane.  
The z-plane is the physical plane and the -plane is the mapped plane where,
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In the mapped plane the hole boundary whose radius equals one is,

θi
boundary eσζ 
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This mapping from the -plane to the z-plane is expressed as,

 ζωz 

where the boundary of the hole, boundaryz , is given by,
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Consider a point E on a line in the z-plane defined by  = constant.  The angle the 
normal to this line at E makes with the x-axis for increasing  is defined as .  When 
 is specified, tan( may be easily found.  Let the function F(x,y) = 0 define the hole 
boundary in the z-plane.  Then,
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The last equation gives the normal direction angle at point E, , and the conformal 
mapping function, ), is used to convert the result to Also note that in terms of 
arc length, s, along the  = constant line,
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As an example of finding , the mapping for a circle of radius R in the z-plane is,
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Note that for a circular hole in the z-plane  is independent of .

As a second example, the mapping for an ellipse is, with,
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major axis in x-direction =  m1R  , minor axis in y-direction =  m1R  ,
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For the ellipse the value of  depends on  and .  On the boundary of the hole ( =1),
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The next step in the method of Muskhelishvili uses the loading on the hole 
boundary to find the real functions Fx(s), Fy(s) and M, the forces and moment, as,
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where s is length measured along the hole boundary and the integrations are in the z-
plane.  The details of the M(s) integration are not given here as M(s) in not used 
explicitly in this report.  The integrals are force and moment components on the hole 
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boundary between the two points A and B.  For the problems considered here the 
boundary point A is taken at  = 0 and point B is taken as a generic value of increased . 
In general, Fx(s) and Fy(s) are real and depend on position along the boundary in the z-
plane.  The conformal mapping function  can be used to express these forces as 
functions of  That is, as Fx() and Fy() and define,
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This last equation is the form for the loading used in this procedure.

The two harmonic functions that determine the solution are (z) and (z).  These 
functions are used to determine the stresses and displacements as follows.
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where G is the shear modulus and  is Poisson’s ratio for the material.  In this report a 
prime symbol on a function implies taking the derivative of the function with respect to 
its argument.  The sketch below shows the positive convention for stresses ,  and . 
The corresponding displacements are u and u directed in the increasing coordinate 
direction.  All of the above equations are for the plane stress condition.  Every elasticity 

textbook shows the equations for plane strain are obtained by replacing 
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above equations by ν43  .
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The expressions for the stresses and displacements given above contain (z) and 
its derivatives so that the mapping function z =  is used to change the variable.  For 
example,

          ζω'

1
ζφ'

z

ζ
ζφ'

z

ζωφ

z

zφ 









             
  

   
   322

2

ζω'

ζ'ω'
ζφ'

ζω'

1
ζ'φ'

ζω'

1

ζω'

1
ζφ'

ζζω'

1
ζφ'

zz

zφ 






















also,

          ζω'

1
ζψ'

z

ζ
ζψ'

z

ζωψ

z

zψ 









The values of Fx and Fy can be expressed in terms of (z) and (z) as shown 
above,
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so that on the hole boundary in the -plane,
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When both harmonic functions are known the equations given above can be used 
to find the stresses and displacements.  It is clear that this application requires only that 
appropriate Fx, Fy and () be specified; the rest is mathematical manipulation.

In order to determine  and  the boundary conditions must be imposed.  
The last equation above is the first part of the boundary conditions.  The other part of the 
boundary conditions is the conjugate of the last equation which is,
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Let  be a point outside the unit circle in the -plane.  The procedure for finding 
 and  is to divide each of the last two equations by  and then integrate 
around the unit circle.  The two resulting equations are,
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The Cauchy theorems are used to evaluate the terms in Equations A and B.  These 
evaluations are described in Appendix A of this report.  The resulting equations are,

   
 





σ ζσ

σdσf

iπ2

1
ζφ

     
 

 
σd

ζσ

σφ'

σω'

σω

iπ2

1

ζσ

σdσf

iπ2

1
ζψ

σγ












 

When f() and  are specified, the first equation determines () and then the second 
equation determines .  The stresses and displacements are found using equations 
given above.
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UNLOADED CIRCULAR HOLE BOUNDARY IN AN INFINITE PLATE WITH
TENSION IN THE X-DIRECTION AT INFINITY

Consider first the plate without the hole.  The only non-vanishing stress 
component everywhere is the normal stress in the x-direction, xO.  The center for the 
hole is at the origin of the x, y coordinates and its radius is R.  When the hole is 
introduced the stresses will be unaltered in the remainder of the plate if the hole boundary
has the following stresses applied, in r- α̂  polar coordinates (note that α̂  is measured 
positive clockwise from the positive x-direction),

 
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and the hoop stress, , at the hole boundary is,
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If the negatives of  and  are superposed on the hole boundary, the boundary loading 
vanishes and the desired stress distribution is achieved.

The Muskhelishvili procedure is applied in this section to remove the above hole 
boundary loads while ensuring the stress at infinity is maintained at the x-direction 
tension.  In other words, except for x, the stresses resulting from this procedure after 
superposing all vanish at infinity.

The conformal mapping that maps a circle in the z-plane (complex plane) into 
another circle in the -plane is,
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The objective here is to map z for the hole boundary of radius R onto the unit circle 
defined by θieσ   so that  = 1 and from Page 4, .  Therefore the boundary 
mapping is,

  θi
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In the following procedure the loads on the hole boundary are defined in terms of
,YandX  the forces per unit boundary length as described earlier.  Let s be a curvilinear

coordinate along the hole boundary ( s is a complex number along the hole boundary in 
the z-plane), then,
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Integral of force vector in x-direction between points A and B   
B

A

x sdXF

Integral of force vector in y-direction between points A and B   
B

A

y sdYF

For this problem the hole is a closed boundary and there is symmetry about the x-axis.   
Fx and Fy are determined choosing  = 0 for point A and a generic value of  for point B 
so that,

    
 

         

 αsinROσ

αdαsinα2sinαcosα2cos1ROσ

sdαsinταcosσF

x

α

0α

x2
1

αs

0s

xyxx















    
 

         

0

αdαcosα2sinαsinα2cos1ROσ

sdαcosταsinσF

θ

0θ

x2
1

αs

0s

xyxy















and then,

  




 









σ

1
σROσ

i2

1

i2

ee
ROσαsinROσFiF x

αiαi

xxyx

The negative of this boundary loading is applied and the Muskhelishvili procedure is 
used to find the solution to this auxiliary problem.

The first step is to define f() corresponding to the boundary loading as,

    




 

σ

1
σROσFiFiσf x2

1
yx

This boundary loading is now used in the following integral and Cauchy’s residue 
theorem is applied to obtain the first of the two potential functions,  required for the 
solution,
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   
ζ

1
ROσ

ζσ

σdσf

iπ2

1
ζφ x2

1

γ






 

since f() has a simple pole (mk =1) at  = 0, the residual is,,

     
ζ

ROσ

ζσ

1σROσ

ζσ

σ

1
σROσ

0σ10Res x2
1

0σ

2
x2

1

0σ

x2
1






































 






The second potential function, , is found using,

  




 





 σ

σ

1
ROσ

σ

1
fσf x2

1

 
2x2

1

ζ

1
ROσζφ' 

in the definition of  which is,

     
 

 
σd

ζσ

σφ'

σω'

σω

iπ2

1

ζσ

σdσf

iπ2

1
ζψ

σγ












 

and

 
  



 1

'


so that, after using Cauchy’s residue theorem,

  







3x2
1

ζ

1

ζ

1
ROσζψ

The first term in the above equation is from the first integral and the integration is 
analogous to the integration for  while the second term is from the second integral 
that has a third order pole (mk = 3) at  = 0 so the residue is obtained as follows,

     

  3
x2

1

0σ

3x2
1

0σ

2

2

x4
1

0σ

3
x2

1
3

2

2

ζ

ROσ

ζσ

1
ROσ

ζσ

1

σd

d
ROσ

ζσσ

ROσ
0σ

σd

d

!2

1
0Res





































































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This determination of the potential functions,  and , completes the formal part of 
the Muskhelishvili procedure. 

The final step is to determine the stresses and displacements with the following 
equations,

  zφ'Re4σσ ηξ 

    zψ'z'φ'ze2τi2σσ αi2
ηξξη  

        



 


  zψzφ'zzφ

ν1

ν3
euiuG2 αi

ηξ

where,

 = clockwise angle from the x-axis to the outward normal to  = constant line in
    z-plane

   =  in this problem as was shown earlier

A prime indicates differentiation with respect to the indicated independent variable, that 
is,

’(z) =    
R

ζφ'

z

ζ
ζφ' 


 

’’(z) =      
22

22

R

ζ'φ'

z

ζ
ζφ'

z

ζ
ζ'φ' 









 

’(z) =    
R

ζψ'

z

ζ
ζψ' 


 

Therefore, the stresses and displacements may be written as,

   ζφ'Re
R

4
σσ ηξ 

    ζψ'ζ'φ'ζ
R

e2
τi2σσ

θi2

ηξξη 


        



 


  ζψζφ'ζζφ

ν1

ν3
euiuG2 θi

ηξ

Substituting  and  into the three above equations, eliminating  using z = ζR   , 
and setting αierz   yields,
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 α2cos
r

R
Oσ2e

r

R
ReOσ2

ζ

1
ReOσ2σσ

2

2

x
αi2

2

2

x2xηξ 
















 

    

   


































































α2sin
r

R
3

r

R
2iα2cos

r

R
3

r

R
2

r

R
Oσ

e
r

R
3

r

R
2

r

R
Oσ

ζ

3

ζ

1

ζ

ζ2
eOσζψ'ζ'φ'ζ

R

e2
τi2σσ

4

4

2

2

4

4

2

2

2

2

x

αi2
4

4

2

2

2

2

x

423
αi2

x

θi2

ηξξη

       

 

  

































 


















 





























 








αsin
r

R
α)(2sin

ν1

ν1
21

r

R
i

αcos
r

R
α)(2cos

ν1

4
1

r

R

2

ROσ

e
r

R

r

R
e

r

R
e

r

R

ν1

ν3

2

ROσ

ζψζφ'ζζφ
ν1

ν3
euiuG2

2

2

2

2

x

θi
2

2
αi2αi2x

αi
ηξ

The three equations above are used to find , , , u and u which are to be 
superposed on the conditions prevailing without the hole given earlier with the following 
results,

  







 α)(2cos

r

R
3α(2cos41-

r

R
Oσσ

4

4

2

2

x2
1

ξ







 α)(2cos

r

R
3

r

R
Oσσ

4

4

2

2

x2
1

η

)(2sin
r

R
3

r

R
2Oστ

4

4

2

2

x2
1

ξη 







  













 





 αcos

r

R
α)(2cos

ν1

4
1

r

R

2

ROσ
uG2

2

2
x

ξ
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  













 





 αsin

r

R
α)(2sin

ν1

ν1
21

r

R

2

ROσ
uG2

2

2
x

η

When the above stresses are added to the stresses in the first three equations of 
this section, the desired stresses are found and given below,

















4

4

2

2

2

2

x2
1

r r

R
3

r

R
4-1α)(2cos

r

R
1Oσσ

















4

4

2

2

x2
1

θ r

R
31α)(2cos

r

R
1Oσσ

α)(2sin
r

R
3

r

R
21Oστ

4

4

2

2

x2
1

rθ 







The displacement field given above contains a rigid body motion that does not 
contribute to the strains and is omitted below.  In addition, the displacements owing to the
uniform strain field caused by the uniform stress field, xO, are not included below.  With
these provisions the displacements are,






 





 α)(2cos

ν1

4
1

r

R

2

ROσ
uG2 x

r






 





 α)(2sin

ν1

ν1
21

r

R

2

ROσ
uG2 x

θ
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 UNLOADED ELLIPTICAL HOLE BOUNDARY IN AN INFINITE PLATE WITH
TENSION IN THE X-DIRECTION AT INFINITY

A mapping that takes an ellipse in the z-plane to a unit circle in the -plane is,

    















 

x

y
arctan

zRe

Im(z)
arctanα̂er

ζ

m
ζRζωz α̂i

where the ellipse has a semi-axis of length  m1R   in the x-direction and its other 
semi-axis has a length of  m1R   in the y-direction.  The radius r and the angle α̂  are 
the usual polar coordinates in the z-plane.  Since the hole boundary in the -plane is

σe θi  , the hole boundary in the z-plane is given by,

  




 


 m

Rωz boundary

A few useful results for this problem are,

  




 

2σ

m
1Rσω'

 
3σ

m2
Rσ'ω'



  




  σm

σ

1
Rσω

   2σm1Rσ'ω 

 
  2

2

σm1

mσ

σ

1

σ'ω

σω




 
 

 
mσ

σm1σ

σω'

σω
2

2




 
   3

2
3

σ

m
σR

m2

σω'

σ'ω'






 


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 
 

 

























 θtan

ρ

m
ρ

ρ

m
ρ

m1

m1
arctanα

2

2

(from Page 5)

The stresses on the boundary before the elliptical hole is introduced are,

  α2cos1Oσσ x2
1

η 

 α2sinOστ x2
1

ηξ 

and the hoop stress at the hole boundary is,

  α2cos1Oσσ x2
1

ξ 

Rather than follow the integrating procedure employed for the previous problem to obtain
yx FiF  , advantage is taken of an obvious “shortcut” given by,

  




 







 σm
σ

1

σ

m
σ

i2

ROσ
zz

i2

1
OσFiF x

boundaryboundaryxyx

so that,

      




 

σ

1
σm1ROσFiFiσf x2

1
yx

and,

    




  σ

σ

1
m1ROσσf x2

1

The equation giving  may be determined now by using the Cauchy residue theorem 
as follows,

 
 

 
ζ

1
m1ROσ

ζσ

σd
σ

1
σm1ROσ

iπ2

1
ζφ x2

1

σ

x2
1









 




 

The above integral has a simple pole (mk = 1) at  = 0 giving,
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   
     

 
ζ

1
m1ROσ

ζσ

1σm1ROσ

ζσ

σ

1
σm1ROσ

0σ10Res

x2
1

0σ

2
x2

1

0σ

x2
1
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The stresses and displacements may be found using the above results in,

  zφ'Re4σσ ηξ   

    zψ'z'φ'ze2τi2σσ αi2
ηξξη  
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  zψzφ'zzφ

ν1

ν3
euiuG2 αi

ηξ

In the preceding problem having a circular hole the results were reduced to real 
expressions for the individual stress and displacement components.  For this problem the 
same procedure would involve considerable algebraic manipulation so a different scheme
is recommended and employed here.  Most computer compilers are written to 
accommodate complex numbers.  The last three equations are expressed in terms of z, 
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(z), ’(z), ’’(z), (z) and ’(z).  The functions (z) and (z) are related to () and 
() through the conformal mapping ) so all of the functions appearing in the 
equations for the stress and displacements are known in terms of equations containing 
complex numbers.  When these stresses are found, the stresses for the uniform x-direction
normal stress given on page 16 must be added to determine the total stresses and thus the 
desired solution.  The displacements reported here are for the imposed hole boundary 
stresses and do not include displacements associated with the uniform x-direction stress.

The appendix to this report contains a source listing for a FORTRAN program, 
MUSK2, which determines the stress and displacement components as described above 
when the following input data are read from a file.

R = mean semi-axis length in z-plane
M = m = ellipse parameter (-1 < M < 1), M = 0 for a circular hole
SXO = Oσ x  = uniform, x-direction normal stress at infinity
RHO =   = radius in - plane , ( plane), (RHO   1), RHO = 1 for hole boundary
NU =  = Poisson’s ratio

The following three figures are from data generated by the computer program for the case
where.

R = 1.0
M = 0.3333
SXO = 10.0
RHO = 1.0
NU = 0.3
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The ratio of at the hole boundary ( = 1) and  = 90o to the uniform tension at infinity 
is usually called the stress concentration factor.  Mechanical design textbooks always 
give this factor for a circular hole.  For the circular hole it is 3.0.  The plot below is based 
on computer runs for different values of the ellipse parameter in the range -1 < M < 1 and
for unit tension at infinity.  When m = 0, the ellipse becomes a circle.  The plot shows 
that the stresses can become large at the boundaries of elliptical holes.
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 APPENDIX A – EVALUATION OF INTEGRALS IN EQUATIONS A AND B
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2. Integrals for ellipse mapping function
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 Since the integrand is analytic in the material region, Equation B becomes,
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APPENDIX B, FORTRAN SOURCE CODE AND ILLUSTRATIVE INPUT FILE
FOR PROGRAM MUSK2

 
  SOURCE CODE:

C=======================================================================
      PROGRAM MUSK2
C
C     JUNE 26, 2015
C
C     FINDS STRESSES AND DISPLACEMENTS FOR ELLIPTICAL HOLE IN AN
C     INFINITE PLATE WITH UNIFORM AXIAL STRESS IN X-DIRECTION AT
C     INFINITY.
C
C     MEAN SEMI-AXIS LENGTH = R
C
C     X-DIRECTION SEMI-AXIS LENGTH = (1+M)*R
C
C     Y-DIRECTION SEMI-AXIS LENGTH = (1-M)*R
C
C     INPUT DATA:
C
C      R        = MEAN SEMI-AXIS LENGTH
C      M        = ELLIPSE PARAMETER
C      SXO      = UNIFORM TENSILE STRESS AT INFINITY
C      RHO      = RADIUS IN XI-ETA PLANE, = 1 ON HOLE BOUNDARY
C      NU       = POISSON'S RATIO
C
C     OUTPUT DATA:
C
C      TABULATION FOR THETA = 0 TO THETA = 0.5*PI OF,
C
C       THETA   = ANGLE TO POINT IN XI-ETA PLANE, deg
C       X       = COORDINATE IN X-DIRECTION IN X-Y PLANE
C       Y       = COORDINATE IN Y-DIRECTION IN X-Y PLANE
C       ALT     = ANGLE IN Z-PLANE TO NORMAL FROM X-DIRECTION, deg
C       XI      = COORDINATE IN X-DIRECTION IN XI-ETA PLANE
C       ETA     = COORDINATE IN Y-DIRECTION IN XI-ETA PLANE
C       SXI     = EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
C       SETA    = EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
C       TAU     = EXTRA SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION
C       GUXI    = (SHEAR MODULUS)*(DISPLACEMENT IN NORMAL DIRECTION)
C       GUETA   = (SHEAR MODULUS)*(DISPLACEMENT IN NORMAL DIRECTION)
C       STXI    = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
C       STETA   = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION
C       TAUT    = TOTAL SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION
C       R(PHI)  = REAL(PHI)
C       I(PHI)  = IMAG(PHI)
C       R(PHIP) = REAL(PHIP)
C       I(PHIP) = IMAG(PHIP)
C       R(PHIPP)= REAL(PHIPP)
C       I(PHIPP)= IMAG(PHIPP)
C       R(CHI)  = REAL(CHI)
C       I(CHI)  = IMAG(CHI)
C       R(CHIP) = REAL(CHIP)
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C       I(CHIP) = IMAG(CHIP)
C       ANGZ    = ANGULAR COORDINATE IN Z-PLANE = ATAN(Y/X)
C
      IMPLICIT
     * NONE
C
      REAL
     * R, M, SXO, RHO, NU,
     * PI, RAT, FACU, XI, ETA, ALF, ANGZ, SUM, DIFF, X, Y, RHOR,
     * THETA, SXI, SETA, TAU, GUXI, GUETA, STXI, STETA, TAUT
C
      COMPLEX
     * PSI, Z, PHI, WRT1, WRT2, PHIP, PHIPP, CHI, CHIP, COMB, GU,
     * EALF1, EALF2
C
      INTEGER
     * I
C
      OPEN (2,FILE='MUSK2.INP',STATUS='OLD',ACCESS='SEQUENTIAL',
     *      FORM='FORMATTED')
C
      OPEN (3,FILE='MUSK2.OUT',STATUS='UNKNOWN',ACCESS='SEQUENTIAL',
     *      FORM='FORMATTED')
C
      READ (2,*) R
C
      READ (2,*) M
C
      READ (2,*) SXO
C
      READ (2,*) RHO
C
      READ (2,*) NU
C
      IF (RHO .LT. 1.) THEN
C
       PRINT *,' RHO MUST BE > 1, PROBLEM ABORTED'
C
       STOP
C
      END IF
C
      WRITE (3,1000)
     * R, M, SXO, RHO, NU
C
 1000 FORMAT (
     *1X,'OUTPUT DATA FILE FOR PROGRAM MUSK2, JUNE 23, 2015',//,
     *2X,'INPUT DATA:',//,
     *3X,'R     = MEAN LENGTH FOR SEMI-AXES             = ',G12.4,/,
     *3X,'M     = ELLIPSE PARAMETER                     = ',G12.4,/,
     *3X,'SXO   = X-DIRECTION TENSION AT INFINITY       = ',G12.4,/,
     *3X,'RHO   = RADIUS IN XI, ETA COORDINATES         = ',G12.4,/,
     *3X,'NU    = RATIO OF POISSON                      = ',G12.4,//,
     *3X,'MAJOR AXIS = (1+M)*R, MINOR AXIS = (1-M)*R',//,
     *2X,'OUTPUT DATA:',//,
     *3X,'IN TABULATION BELOW,',//,
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     *4X,'THETA = CW ANGLE FROM XI DIRECTION IN PSI-PLANE, deg',/,
     *4X,'X     = X-COORDINATE IN Z-PLANE',/,
     *4X,'Y     = Y-COORDINATE IN Z-PLANE',/,
     *4X,'ALF   = CW ANGLE OF NORMAL FROM X DIRECT. IN Z-PLANE, deg',/,
     *4X,'XI    = XI-COORDINATE IN PSI-PLANE',/,
     *4X,'ETA   = ETA-COORDINATE IN PSI-PLANE',/,
     *4X,'SXI   = EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'SETA  = EXTRA NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'TAU   = EXTRA SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'GUXI  = EXTRA (SHEAR MODULUS)*(XI NORMAL DISPLACEMENT)',/,
     *4X,'GUETA = EXTRA (SHEAR MODULUS)*(ETA NORMAL DISPLACEMENT)',/,
     *4X,'STXI  = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'STETA = TOTAL NORMAL STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'TAUT  = TOTAL SHEAR STRESS IN Z-PLANE, NORMAL DIRECTION',/,
     *4X,'R(PHI)  = REAL(PHI)',/,
     *4X,'I(PHI)  = IMAG(PHI)',/,
     *4X,'R(PHIP) = REAL(PHIP)',/,
     *4X,'I(PHIP) = IMAG(PHIP)',/,
     *4X,'R(PHIPP)= REAL(PHIPP)',/,
     *4X,'I(PHIPP)= IMAG(PHIPP)',/,
     *4X,'R(CHI)  = REAL(CHI)',/,
     *4X,'I(CHI)  = IMAG(CHI)',/,
     *4X,'R(CHIP) = REAL(CHIP)',/,
     *4X,'I(CHIP) = IMAG(CHIP)',/,
     *4X,'ANGZ    = ANGULAR COORDINATE IN Z-PLANE',//,
     *1X,4X,'THETA',4X,6X,'X',6X,6X,'Y',6X,5X,'ALF',5X,6X,'XI',5X,
     *5X,'ETA',5X,5X,'SXI',5X,5X,'SETA',4X,5X,'TAU',5X,
     *5X,'GUXI',4X,4X,'GUETA',4X,5X,'STXI',4X,4X,'STETA',4X,
     *5X,'TAUT',4X,4X,'R(PHI)',3X,4X,'I(PHI)',3X,3X,'R(PHIP)',3X,
     *3X,'I(PHIP)',3X,3X,'R(PHIPP)',2X,3X,'I(PHIPP)',2X,4X,'R(CHI)',3X,
     *4X,'I(CHI)',3X,3X,'R(CHIP)',3X,3X,'I(CHIP)'3X,5X,'ANGZ',/)
C
      PI = 4. * ATAN(1.0)
C
      RAT = ((1. + M)/(1. - M))**2
C
      RHOR = (RHO + M / RHO) / (RHO - M / RHO)
C
      FACU = (3. - NU) / (1. + NU)
C
      DO 100 I = 1, 51
C
C      THETA IS A COORDINATE IN THE PSI-PLANE, PSI = XI + i*ETA
C
       THETA = 0.5 * PI * (I - 1.) / 50.
C
       IF (THETA .GE. 0.5*PI) THEN
C
        XI = 0.
C
        ETA = RHO
C
       ELSE
C
        XI = RHO * COS(THETA)
C
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        ETA = RHO * SIN(THETA)
C
       END IF
C
C      PSI IS COMPLEX COORDINATE IN PSI-PLANE
C
       PSI = CMPLX(XI, ETA)
C
C      Z = COMPLEX COORDINATE IN Z-PLANE, Z = X + i*Y
C      OBTAIN USING CONFORMAL MAPPING FOR AN ELLIPSE
C
       Z = R * PSI + M * R / PSI
C
       X = REAL(Z)
C
       Y = AIMAG(Z)
C
C      ANGZ = ANGULAR COORDINATE IN Z-PLANE
C
       IF (X .EQ. 0.) THEN
C
        ANGZ = 0.5 * PI
C
       ELSE
C
        ANGZ = ATAN(Y / X)
C
       END IF
C
C      ALF = CW ANGLE FROM X-DIRECTION TO NORMAL IN Z-PLANE
C
       IF (ANGZ .LE. 0.) THEN
C
        ALF = 0
C
       ELSE IF (ANGZ .GE. 0.999 * 0.5 * PI) THEN
C
        ALF = 0.5 * PI
C
       ELSE
C
        ALF = ATAN(RAT * TAN(THETA) / RHOR)
C
       END IF
C
C      EALF1 = COMPLEX CW ROTATION OF ALF
C
       EALF1 = CMPLX(COS(ALF), SIN(ALF))
C
C      EALF2 = COMPLEX CW ROTATION OF 2*ALF
C
       EALF2 = CMPLX(COS(2.*ALF), SIN(2.*ALF))
C
C      F'(Z) = F'(PSI) * WRT1
C      F''(Z) = F''(PSI) * (WRT1**2) + F'(PSI) * WRT2
C
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       WRT1 = 1. / (R * (1. - M / (PSI**2)))
C
       WRT2 = -2. * M / ((R**2) * ((PSI - M / PSI)**3))
C
C     GET DERIVATIVES WITH RESPECT TO Z FOR PHI, PHIP AND CHI
C
       PHI = 0.5 * SXO * R * (1. - M) / PSI
C
       PHIP = -0.5 *SXO * R * ((1. - M) / (PSI**2)) * WRT1
C
       PHIPP = (SXO * R * (1. - M) / (PSI**3)) * (WRT1**2)
     *         - 0.5 * SXO * R * ((1. - M) / (PSI**2)) * WRT2
C
       CHI = 0.5 * SXO * R * (1.- M) *
     * ((1. + M * (PSI**2)) / (PSI * ((PSI**2) - M) ) - 1. / PSI)
C
       CHIP = (0.5 *SXO * R * (1. - M) / (PSI**2 * ((PSI**2 - M)**2)))
     *   * (2. * M * (PSI**2) * (PSI**2 - M)
     *   - (3. * (PSI**2) - M) * (1. + M * (PSI**2))
     *   + (PSI**2 - M)**2) * WRT1
C
C      SUM = SXI + SETA
C
       SUM = 4. * REAL(PHIP)
C
C      COMB = SXI - SETA + 2*i*TAU
C
       COMB = 2. * EALF2 * (CONJG(Z) * PHIPP + CHIP)
C
       DIFF = REAL(COMB)
C
C      TAU, SXI & SETA ARE STRESSES TO BE SUPERPOSED ON INITIAL TENSION
C
       TAU = 0.5 * AIMAG(COMB)
C
       SXI = 0.5 * (SUM - DIFF)
C
       SETA = 0.5 * (SUM + DIFF)
C
C      STXI, STETA & TAUT ARE ACTUAL STRESSES AFTER SUPERPOSITION
C
       STXI = SXI + 0.5 * SXO * (1. + COS(2.*ALF))
C
       STETA = SETA + 0.5 * SXO * (1. - COS(2.*ALF))
C
       TAUT = TAU - 0.5 * SXO * SIN(2.*ALF)
C
C      GU = (SHEAR MODULUS)*(UXI + i*UETA), UXI & UETA ARE DISPLACEMENTS
C
       GU = 0.5 * EALF1 * (FACU * CONJG(PHI) - CONJG(Z) * PHIP - CHI)
C
       GUXI = REAL(GU)
C
       GUETA = -AIMAG(GU)
C
       WRITE (3,1100)
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     * THETA*180./PI, REAL(Z), AIMAG(Z), ALF*180./PI, XI, ETA,
     * SXI, SETA, TAU, GUXI, GUETA, STXI, STETA, TAUT,
     * REAL(PHI), AIMAG(PHI), REAL(PHIP), AIMAG(PHIP), REAL(PHIPP),
     * AIMAG(PHIPP), REAL(CHI), AIMAG(CHI), REAL(CHIP), AIMAG(CHIP),
     * ANGZ*180./PI
C
 1100  FORMAT (
     *1X,25(1X,G12.4))
C
  100 CONTINUE
C
      WRITE (3,1200)
C
 1200 FORMAT ( /,
     *1X,4X,'THETA',4X,6X,'X',6X,6X,'Y',6X,5X,'ALF',5X,6X,'XI',5X,
     *5X,'ETA',5X,5X,'SXI',5X,5X,'SETA',4X,5X,'TAU',5X,
     *5X,'GUXI',4X,4X,'GUETA',4X,5X,'STXI',4X,4X,'STETA',4X,
     *5X,'TAUT',4X,4X,'R(PHI)',3X,4X,'I(PHI)',3X,3X,'R(PHIP)',3X,
     *3X,'I(PHIP)',3X,3X,'R(PHIPP)',2X,3X,'I(PHIPP)',2X,4X,'R(CHI)',3X,
     *4X,'I(CHI)',3X,3X,'R(CHIP)',3X,3X,'I(CHIP)'3X,5X,'ANGZ')
C
      END
C=======================================================================

  ILLUSTRATIVE INPUT DATA FILE:

1. = R = MEAN LENGTH OF SEMI-AXES
0.3333 = M = ELLIPSE PARAMETER
10. = SXO = X-DIRECTION 
1. = RHO= RADIUS IN XI-ETA COORDINATES
0.3 = NU = POISSON'S RATIO

THIS IS FILE: Musk1.doc

 

31


