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I.   INTRODUCTION 
 
 The subsidence issue considered in this study is the prediction of the surface 
displacements, vertical and radial, owing to changes in the pore pressure within a 
reservoir.  The model for the predictions is based on a poroelastic half-space containing a 
horizontal reservoir.  The reservoir is composed of up to 25 circular, parallel layers each 
with a height that is small compared to its depth below the surface.  The centers of the 
layers lie along a single vertical line.  The pore pressure does not change outside the 
reservoir layers.  The pore pressure change within each reservoir layer is composed of 
two parts.  The first is a uniform pressure decrease in the reservoir from the original 
pressure distribution.  The second is a steady-state pressure distribution derived from a 
specified drawdown pressure using a constant permeability Darcy’s Law.    
 
 Each thin circular reservoir layer is modeled as a single layer of  “pressure 
points”.  A pressure point is a small volume in an infinite poroelastic body that undergoes 
a pore pressure increase of Δp.  The stress and displacement fields surrounding the 
pressure point are given in many elasticity textbooks (e.g. Reference 1).  This pressure 
point solution is used to determine a Green’s Function for constructing the solution for 
the half-space containing the reservoir.  The tractions on the surface of the half-space are 
all zero. 
 
 A numerical integration is used for the circumferential and radial integrations that 
sum the contributions from the reservoir pressure points.  These integrations yield 
predictions for the vertical and radial displacements. 
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II.   DESCRIPTION OF ONE LAYER OF THE RESERVOIR CONFIGURATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The sketch above shows the most important parameters for the configuration 
being studied.  The components, Δx, Δy and Δz, of the vector from Point RGP in the 
reservoir to Point RCP on the x-axis are important for the subsidence calculations.  They 
are, 
 

         1, 2, 3 

 
Consequently, the distance, RGC, between Points RGP and RCP is, 
 

RGC = RGC(RCP, RG, H, ) =           4 
 
or, equivalently, 
 
RGC =               5 
 
where, 
 

RD =                  6 
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Note that for this configuration the values of both RCP and RG are positive so that RD is 
always less than one. 
 
Application of the pressure point solution, given below, to the points in the reservoir 
layer (z = H, r = 0 to RGmax and  = 0 to ) requires integration to find the 
displacement at RCP. 
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III.   POINT PRESSURE SOLUTION 
 
 Reference 1, pp. 392-395, gives the solution for a spherical hole of radius a 
centrally located in a spherical, elastic body of radius b.  The inner surface is subjected to 
a pressure of Δps with no shear traction.  The tractions on the outer surface are zero.  Let 
R be the radial coordinate in a spherical coordinate system centered in the body.  The 
radial stress, σR, and tangential stress, σT, are given by, 
 

             7, 8 

 
To obtain the solution for an infinite elastic medium with a hole of radius = a, let  
in the two equations above so that, 
 

            9, 10 

 
Clearly, for this solution the only displacement change is the radial displacement, Δups, 
which is a function of r.  The changes in the radial strain, ΔεR, and tangential strain, ΔεT, 
are, 
 

     11, 12 

 
where E is Young’s Modulus of Elasticity and ν is Poisson’s Ratio.  Therefore, the 
solution for Δups is, 
 

               13 

 
When points remote from the point pressure (R >> a) are considered the shape of the 
volume for the point pressure is not important so a3 may be approximated by the volume, 
VOL, of the sphere (recall for a sphere the volume is ).  The generalized result to 
be employed in the next section is, 
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               14 

 
In order to complete the point pressure solution the solution for the displacements 

is required.  This second solution is for a solid, elastic sphere of radius a subjected to a 
uniform external pressure and in addition an internal volumetric strain of .  Let the 
external pressure be designated as Δpx and the radial displacement as Δux.  The solution 
for this almost trivial problem is, 
 

              15 

 
The nominal radius of this sphere is a.  Now requiring radial force equilibrium for the 
two solutions at R = a so that, 
 
Δps = Δpx                 16 
 
and requiring displacement continuity at R = a so that, 
 
Δups = Δux                  17 
 
gives the desired result for the point pressure solution that, 
 

                18 

 
This last relation between Δps and Δε* is used when the loading changes are given in 
terms of Δε* rather than Δps.  For example, in thermoelastic analysis Δε* =  where 
α is the coefficient of linear thermal expansion and ΔT is the increase in temperature.  
Reference 2, Chapter 1 refers to Δε* as an “eigenstrain” and uses this concept to 
determine solutions for many problems.  The subsidence problem for an ellipsoidal 
reservoir with a uniform pore pressure reduction is included in Reference 2. 
 
 Finally, for this point pressure solution consider two points in a single vertical 
plane as shown below.  The results given above are used to find changes of the radial 
displacement and stresses at the horizontal surface, Point B, when a point pressure occurs 
at Point A below the surface.  Now, as a thought experiment, consider rotating the 
vertical plane in the figure below between -180o and +180o about Line C-C’.  The σR and 
σT stresses at the surface will not be altered but the surface stresses will vary with 
rotation angle.  In particular, a surface shear stress is developed that is perpendicular to 
Line C-C’.  Note that this shear stress is an odd function of the angle of rotation.  
Consequently, a fictitious point pressure can be superposed at Point D with a negative 
point pressure equal in magnitude to the one at a generic point so that the surface 
tractions will all be zero.  If the location of the generic point is A’ is (x, y, z) then the 
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location of Point D is (x, y, -z).  All points in the reservoir are matched in this way in the 
analysis in the next section. 
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IV.   THE HALF-SPACE PROBLEM 
 
 The boundary of the half-space in the model considered here has no applied 
nontrivial tractions.  The only loading in the half-space is from a finite number of point 
pressures applied in the horizontal, thin, circular reservoir layers.  The point pressure 
solutions for an infinite medium cause nontrivial stresses on the surface of the half-space.  
The procedure described in the previous section is used to remove the surface tractions by 
superposing fictitious, negative point pressures above the surface.  Each point pressure 
causes a displacement vector,  at the surface that is parallel to the line joining the point 
pressure location and the surface point being considered.  The unit length vector parallel 
to this line and pointed toward the surface is denoted by .  Taking into account a single 
point pressure with Δp pressure increase gives,  
 

               19 

 
Now using Equations 1 through 4 the components of  are found with obvious notation 
as, 
 

                20, 21, 22 

 
When the displacement changes of the corresponding fictitious, negative point pressure 
are added to the displacement changes given by Equations 20, 21 and 22 the result is, 
 

                          23, 24, 25 

 
Equations 23, 24 and 25 are used in the calculation results presented in this study. 
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V.   SOME DETAILS CONCERNING THE NUMERICAL INTEGRATION 
 
 Program SUBSI6 was prepared as a FORTRAN computer program to make the 
calculations described above.  It has two straightforward numerical integrations. The first 
integration is on the angle  and the second integration is on the cylindrical radius r.  The 
integrations find the outward radial and upward vertical displacements.  These 
determinations are made for each of the selected radial positions.  The integration on  
extends from 0 to π and is then multiplied by two.  The radial integration extends from 
the reservoir borehole radius to the radial boundary of the reservoir.  When the 
coordinates for the RG stations have been set, RG(I), in the program, the point pressure 
values, P(I), are determined in source code notation as follows, 
 

            26   

 
The input data required for a computer run are (using the notation in the program 

source code), 
 
RCMAX = maximum calculation radius, in 
NC  = number of spaces for RCMAX (< 51) 
DRAT  = (RCMAX) / (borehole radius) 
E  = Young's modulus, psi 
NU  = Poisson's ratio  
NH  = number of layers 
A tabulation of layer properties one row for each layer 
:  
 RGMAX NG H DH PI PO POR 
 

where for the Ith layer, 
 
        RGMAX(I) = reservoir radius, in 
       NG(I)    = number of spaces for RG integration 
        H(I)      = mean depth of reservoir below surface, in 
        DH(I)    = vertical thickness of reservoir, in 
        PI(I)     = producing pressure at reservoir borehole, psi 
        PO(I)     = reservoir pressure at RGMAX, psi 
        POR(I)   = original reservoir uniform pressure, psi 
 
 The output data file contains all of the input data as well as a tabulation for I = 1 
to NC+1 of, 
 
RC(I)  = radial position, in 
DUV(I) = upward vertical component of surface displacement change, in 
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DUR(I) = outward radial component of surface displacement change, in 
 
and, 
 
VOLUME OF SURFACE SUBSIDENCE, cu.in. 
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VI.   ILLUSTRATIVE EXAMPLES 
 
 The input data for the first illustrative example are, 
 
RCMAX = 20,000. in 
NC  = 20 
DRAT  = 4,000 
E  = 500,000. psi 
NU  = 0.25  
NH  = 1 
10,000. 100 4000. 200. 2,000. 3,000. 5,000. 
RGMAX NG H DH PI PO POR 
 

Note that the reservoir has only one layer.  The results given below were checked 
by an altered, slower version of the program that uses a Simpson’s Rule integration 
scheme to determine successive values for the RG integration as NG is increased.  The 
progression stops when the change in the integral between steps becomes smaller than a 
preset value.  The results between the programs agreed with differences in the vertical 
displacements occurring in the fourth significant digit and for the radial displacements in 
the third significant digit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A result of interest in some calculations is the surface subsidence volume 
displaced.  For the case shown in the above figure, 
 
Displaced volume = 4.12E8 cu.in. 
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 The input data file for the second illustrative problem is given below.  The data 
show that there are five layers in the reservoir. 
 
20000.D0 = RCMAX = maximum calculation radius, in 
20  = NC  = number of spaces for RCMAX (< 51) 
4000.D0  = DRAT = (RCMAX) / (borehole radius) 
5.D5  = E  = Young's modulus, psi 
0.25D0  = NU  = Poisson's ratio  
5  = NH  = number of layers 
 
RGMAX NG H  DH  PI  PO  POR 
 
6000.D0  100  3000.D0  200.D0  2000.D0  3000.D0  3500.D0 
8000.D0  100  3500.D0  200.D0  2250.D0  3250.D0  3750.D0 
10000.D0 100  4000.D0  200.D0  2500.D0  3500.D0  4000.D0 
8000.D0  100  4500.D0  200.D0  2750.D0  3750.D0  4250.D0 
6000.D0  100  5000.D0  200.D0  3000.D0  4000.D0  4500.D0 
 
 
The figure below gives the surface displacements for this illustrative problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Displaced volume = 1.74E9 cu.in. 
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ADDENDUM A – A NOTE ON THE ANGULAR INTEGRATION 
 
 The original program that was prepared to obtain data for this study used 
numerical integration in both the radial and angular directions.  This program has been 
altered by replacing the angular integration with complete Legendre elliptic integrals, 
K(k) and E(k), as described below. 
 
 Equations 19 through 22 may be expressed as, 
 

          A1  

 

             A2  

 

             A3  

 
with RD, A, B, C and D independent of .  Let, 
 

            A4  

 
then, 
 

, for this problem 0  RD  1          A5  

 
                A6  

 
               A7  

 
                A8  

 
                A9  

 
Consequently, the integration on  can be accomplished when the following integrals 
have been evaluated. 
 

           A10  
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          A11  

 
 

          A12  

 
The integrations yield, 
 

          A13  

 

     A14  

 

           A15  

 
where, 
 

K(k) = complete elliptic integral of 1st kind =        A16  

 

E(k) = complete elliptic integral of 2nd kind =       A17   

 
Subroutines for K(k) and E(k) are readily available (e.g. – Numerical Recipes).  Note that 
the argument k is an imaginary number while K(k) and E(k) are real.  
 
 When the integrals in Equations A10, A11 and A12 are extended from  to  
and the presence of the fictitious negative point pressure at -z are taken into account, 
analogous to Equations 23, 24 and 25, the results are that, 
 
ux = x component of displacement =           A18  
 
uy = y component of displacement =           A19  
 
uz = z component of displacement =           A20  
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ADDENDUM B – DISPLACEMENTS BELOW THE HALF-SPACE SURFACE 
 
 The procedure described above calculates the surface displacements by applying 
pressure points within the reservoir being studied.  In order to have surface tractions 
(normal and shear stresses) vanish, a fictitious pressure point is superposed on each 
pressure point applied in the reservoir.  That is, for a pressure point in the reservoir at 
(r, , H) there is a pressure point of equal magnitude and opposite sign applied at the 
fictitious point (r, , -H).   
 

The displacements at points below the surface may be determined using a similar 
procedure.  For a generic point (r, 0, z) with 0 < z < H, and a pressure point (with Δp and 
VOL) at , the corresponding fictitious pressure point is 

located at .  Let 1 be the subscript for the pressure point in 
the reservoir and 2 be the subscript for the fictitious pressure point.  Now, referring to 
Equations 20, 21 and 22, 

 

               B1 – B6  

 

             B7 – B12  

 
When Equation 19 is taken into account and U is defined as, 
 

            B13  

 
The displacement at (r, 0, z) is given by, 
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            B14  

            B15  

             B16  

 
The above equations in this Addendum show that the displacement components 

corresponding to a specific value of RG may all be expressed in the form, 
 

       B17  

 
Consequently, the integrals given in Equations A10, A11 and A12 may be applied to 
determine the displacements at points below the surface. 
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