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PRELIMINARY REMARKS

These are lecture notes prepared for the Blade Energy Partners Film “Theoretical and Applied
Plasticity”. Several sources were used to compile the notes so the format varies from section to section.
These notes are not self-contained so considerable explanatory material would be required to fill in
much of what is presented below. They should be regarded as a supplement to the film for persons
wanting a bit more detail than the film provides.



BLADE ENERGY PARTNERS
THEORETICAL AND APPLIED PLASTICITY COURSE, MAY 9, 2011
Paul R. Paslay, P. E. #44278, Manatee Inc., F-4992
INTRODUCTION
Principal Texts,

1. William Prager and Philip G. Hodge, Jr., Theory of Perfectly Plastic Solids, Dover
Publications, 1968 (originally published by John Wiley & Sons, Inc., 1951)

2. Rodney Hill, The Mathematical Theory of Plasticity, Oxford at the Clarendon Press, 1950

3. Ted L. Anderson, Fracture Mechanics, Third Edition, Taylor & Francis, 2005

4. Philip G. Hodge, Jr., Plastic Analysis of Structures, McGraw-Hill Book Company, 1959

Plastic Instability of a Tension Bar

The derivation presented here is taken from Hill, Reference 2. This derivation considers a cylindrical
bar subjected to tension parallel to its axis. For ductile, metallic bars it is well known that, for a
monotonically increasing tension load which started at the unloaded condition, the load reaches a
maximum and then decreases before the bar is separated into two pieces. The analysis given here relates
the occurrence of the maximum load to a property of the true stress versus engineering strain curve for
the material being tested.

While the bar is being loaded let,

= current true stress = (axial load)/(current cross-sectional area)
= current length of the bar
= original length of the unloaded bar

= currenttruestrain=In(l/1 )

ol o T~ 7 Q

= current engineering strain =1/l -1
note that £ = In(l+€)and e =e* — 1
= current cross-sectional area
o = original cross-sectional area of the unloaded bar
= axial load (positive when tensile)

= > >

The volume of the bar isA -1. Assume the elastic strains are negligible compared to the plastic strains
when the maximum load is reached. Further, make the usual assumption that plastic deformation does
not alter the material volume. Then

d(A-)=0 = 1-dA+A-dl=0 All

The condition that the axial load reaches a maximum value implies that

dL=d(0-A)=0 - 0-dA+A-do=0 Al2
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Combining Equations Al.1 and Al.2 to eliminate dA/A gives

da_dleda_dg_%da_de_ AL3
o 1 o o l+e

or

do_o AL4
de l+e

This is the condition that is fulfilled when the maximum load is reached. The construction shown in the
sketch below indicates how Equation Al.4 can be solved graphically using a true stress (o) versus
engineering strain (€ ) curve.

point of plastic instability where load is maximum

TRUE STRESS

ENGINEERING STRAI

When the maximum load, L is found, the ultimate tensile strength S, (an engineering stress) is

max 2

given by,
Lmax
Sy = A— AlS

An Elementary Structures Problem

! i Small displacements, elastic-plastic bars
3 identical bars, same yield stress oyp, same area, A,
e same Young’s modulus, E
T1 is tensile force in center bar
T2 is tensile force in outer bars
L - » - 01 is the change of length of the center bar
02 is the change of length of the outer bars
All connections are pin connections

V4

A
-
h




Let,
N 51*=Gﬂ.L Tl}‘,;ﬂ. *
Tl =0y A E L
. so that E-A
T2 =0 A * Gyp ng% ) . *
yp _ Ly
02 \/5 E L \/E'L

Start P from zero with T1 = T2 =0 & 61 =82 = 0 and increase P monotonically.

For initial elastic region, 0 <81 <81 :

51
82 = —
J2
Tl:ﬂ.gl
L
T2=%-E'51
L
P=T1+\/5-T2=1+*/§-ﬂ-51
J2 L
_ 1+42 E-‘A _.
. Pelastic limit — T 61
J2 L
For 81 > 81" but not enough to yield side bars:
T1=TI1"
T2=%-—E'A-51
L
p=T1*+L.E.51
J2 L
valid until T2 = T2", then 81 =2-81" and,
P=(+v2)TI'
For 81> 2-81"
T1=T1
T2=T2"=T1"

P=TI' ++2-T2" = (+2)T1"

load does not change with increasing 61



For unloading from 81" >\2-81", let §=51""- 81

Initial unloading is elastic for 0 <8 <2-81"

Ti=TI" - E A5
L
T2=T2" -1 ﬁ 5
L
P=Tl++2 -T2 _Q+J—)T1 _ﬂ 1+\/_
V2
when & =2-81 , it is the end of elastic unloading and,
* E-A
Pinitial untoad yiela = = T1 == 81
Tl=-TI
T2=0
For 2:81° <8 <4-81"
Tl=-TI"
E-A .
T2=-F—-23l
P=_T]* _Lﬁ ) 51*)
2L

when & = 4-517, further increase in & does not change loads
P=-TI -\/3-%-81* —(+2)Tr

Tl=-T1"
T2 =-TI"

The figure below shows the cycle computed above graphically.



P*L/(E*A*31"

1 3 4 1 (0, 0)
2 (1,1.707)
3 (2,2.414)
4 (317, 2.414)
5 8172, -1)
6 (817"-4, -2.414)
:6/61*




9
YIELD CONDITIONS FOR ISOTROPIC MATERIALS (IN CARTESIAN COORDINATES)

Oj = the usual spatial stress tensor, ;= 0ji , 1 =X, Y, Z

If the material is isotropic then the function defining the yield condition in terms of the stresses must not
change when the xyz coordinates are changed. To find the admissible forms a little linear algebra
follows using matrix notation,

Coordinate change to [ X ] from [x]: [i]= [c][x] , where [c]" =[c]"

Stress changes from [0 ] to [0 ] where [6] = [c] [cs]- |:c:|r

Recall that the determinant of the product of two square matrices is equal to the product of their
determinants so that |5 | = |c| . |0| -‘c‘l‘ = |a| and the determinant is independent of the coordinate system

chosen.

Now |[c]— A [I] is the determinant of a legitimate stress field where A is to be determined. In fact,

when this determinant is set to zero, the three roots for A are the principal stresses which are, of course,
independent of the coordinate system chosen. The cubic equation in A resulting from the expansion of
this determinant, DET, is,

DET =

—X3+(c5 +0,+0 )X2+(—0 ‘6, -06,,°6,,-6,,'G,, +6,,°G,, +G, "G, +G,, 'C )k
XX vy 7z xx  2yy yy Pzz 72z Y xx yz Pzy zx Ixz xy 2yx

+(Gxx.6yy.czz+0yx'0yz.czx+ze.czy'0yz_sz'cxz'cyy_czy.cyz'cxx_Gzz.cxy.cyx)

Since the roots for A are independent of the coordinate system chosen, the coefficients, called invariants
of the stress tensor, must also be independent. Three stress functions, IN1, IN2 and IN3 and, J2, a
combination of IN1 and IN2 are given below,

INl=6,, +0,, +0,
IN2=-0,, "Gy, =0y, "0, =0, "Oy +0,,"C, +0G, "Gy, +0,, Oy
IN3 = O xx 'ny 'Oz +ny 'Gyz "0, t 0y, 'Gzy 'Gyz ~—Ox Oy 'ny - Gzy .Gyz "Oxx =~ 0y .ny 'ny

_ . 1. 2 2 2 . . . )+ 2 2 2
J2=1IN2+3 (INI)Z—g @XX +0," +6, —0y 0y -0, 6, -0, Oy FG," +0,  +0,,

A very popular criterion for the onset of yielding, called the von Mises yield condition, is,
2=k’
where k is the yield point in shear. The relationship between the yield point in shear and the yield point

in tension, Oyy, 1S easily found by taking o as the only nontrivial stress and substituting it into the last
equation to obtain,

Gyp=\/§’k
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Comparison of the Beltrami and the Von Mises Yield Criteria

The von Mises criterion may be written, in a general Cartesian coordinate system, as,

2 2 2 2 2 2 2)
(0} =0 +0 + O -0, °'0y,—-0,°'0,—-0,"0 +3'T + T + T
yp = Ox Y z x Oy y ‘Oz 7z "Ox XY Yz 7X )

where o is a normal stress and T is a shear stress. Consider the case of a long, closed cylinder with
internal pressure of p; and no external pressure. Superpose an axial load, P, on the closed cylinder. The

elastic stress state away from the ends of the cylinder and at the inner radius is,

o, =radial stress =-p,

: : OD? +1D?

o, = circumferential stress=p, - ————
OD” -1D

ID? P

6, = axial stress =p, - 2 2t
OD’-ID* " z-(0D* - ID*)

and the shear stresses vanish. In this case the von Mises criterion becomes,

2

(OD? -1D*) -6,,> =3-0OD* -p.* +

so that.
: o -(OD’ - 1D’
iy |P=0 = internal pressure to initiate yielding when P=0 = Ove ( 5 )
J3-0D
Py‘ 020 = axial load to initiate yielding when p; = 0 =26y (OD2 -1D’ ]

and the criterion may be written as,

) 2
b; I =1
Piy | P=0 Py‘ p =0

The same procedure will now be followed for the Beltrami yield criterion. It may be written as,

2 2 2 2 2
Oyp =(GX+(5Y+GZ) —2‘(1+V)'(GX'GY+0Y’GZ+GZ'GX—’EXY - Ty, =T,y )

where v 1s Poisson’s ratio. Note that the von Mises and Beltrami criteria coincide when v = 0.5. When
the stress state at the ID of the cylinder is substituted into this criterion, the result is,
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%-(1+v))-(é[l)))2. pi P

y‘pi=0 V3 piY|P=0 Py‘pl=0

+(piji1>_0]2. 3-(2)4 —%-(1+v)~ 3-(%)4 —1]]—1=0

oD
The figure below gives a comparison of the two criteria when v = 0.3 and the diameter ratio is
0.76333.

2

P +(2-\/_—

COMPARISON OF BELTRAMI AND VON MISES YIELD CRITERIA
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REFERENCE:

A quote from History of Strength of Materials by Stephen P. Timoshenko:

“Beltrami' suggested that, in determining the critical values of combined stresses, the amount of strain
energy stored per unit volume of the material should be adopted as the criterion of failure. This theory
does not agree with experiments, however, since a large amount of strain energy may be stored in a
material under uniform hydrostatic pressure without the onset of fracture or yielding,”

1 Rendiconti, p. 704, 1885; Math. Ann., p. 94, 1903.

From Theory of Elasticity, Third Edition, by S. P. Timoshenko and J. N. Goodier:

Define stress invariants Iy, I, and I5 as

I =ox+oy+o0;



L=o0,0,+0,/0,+0,0, -1, -7, -T

L=0,0,0,+27,71,T,-0,T, -0,'T, -0

yz zX X yz y zX
then the strain energy per unit volume, V,, is given by,

| -
Vo= ﬁ'lilz - 2-(1+v)-12_
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SIMPLE PROBLEM, PRANDTL-REUSS MATERIAL, INCOMPRESSIBLE

The formulation of the constitutive equations used in Prager & Hodges’ treatise is somewhat involved
and not done very well from a Physics point of view in their book. A different formulation is presented
later. Appendix 5 presents the equations used by Prager & Hodge. The reader is asked to accept
Appendix 5 so that problems can be worked as soon as possible. Note that A is a new unknown that

must be determined using the yield condition. The first problem is shown below,

—;T,’Y

1. Apply o first to~/3 -k, no plastic flow.
— — >0, ¢ 2. Keep £ =0 and apply T.

—

For second loading:

Rate of doing work = W=r1- v

Parameter in Prandtl-Reuss equation = A = szw = Gl.:z'y
T
. 2 . 5
. . LTy . T G-y k
Prandtl-Reuss equation: =G |ly-——1|=Gy|l-—|>—=
1 - kiz

Use f 2dx > =l-tanh’1(§)
pT—-x p p

To obtain Gy —tanh{ X)) = F = tanh G-y
k k k k

© \/5 1_T_=L

Use yield criterion o> +3-1° =3-k> — o"

See figure below
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DIMENSIONLESS TENSILE AND SHEAR STRESSES VERSUS DIMENSIONLESS

SHEAR STRAIN
\\
N _
\ DIMESIONLESS SHEAR STRESS = T/k
k/’
/ \\
DIMESIONLESS TENSILE STRESS = 9/k —
0.0 0.5 1.0 1.5 2.0 2.5 3.0

DIMENSIONLESS SHEAR STRAIN = G*//k
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SECOND SIMPLE PROBLEM, PRANDTL-REUSS MATERIAL, INCOMPRESSIBLE
Similar to first but order of loading is reversed.

1. Apply T up to k with no plastic flow.
2. Hold y = 0and apply o.

After first step: o0=0,t=k,e=0andy= %
: e . 2
For second step: W=0-%, ’f=G'E"E, 6=3-G-[¢- o' ‘o| — 9 . 1- @ £
k? 3-k? 3-G 3-k°
Integrating: ° _tanh 3G ‘€
V3-k k
Use yield criterion %-02 +10=k? - —= !

T
cosh " €

Comparison of the solutions for the two simple problems,

First problem \/_G = lG , % = tanh(%)
3k cosh(y)
k
Second problem ©  _tanh 3G , L !
V3 -k k k J3:G-g
cosh
k
Note that ° and X as well as ﬁ Ge and Gy switch roles in the two solutions. More
Bk k k

important, the solutions show that the results are load path dependent as first step can induce a plastic
strain
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A LESS SIMPLE PROBLEM SOLVED USING AN ANALOGY, TORSION

Right cylinder with z axis intersecting the centroid of the cross section
The cross section is simply connected (enclosed by single curve)
Axial length of cylinder is much greater than the cross-section extent
Neglect end effects

An axial torque, T, is applied to the top of the cylinder

An axial torque, -T, is applied to the bottom of the cylinder

0 = angle of twist per unit length away from ends

The lateral surfaces of the cylinder are stress-free

Assume the displacements in the elastic and plastic regions of each cross section are,

u, =-y-z-0

u, =x-z-6
w=w(x,y:9)

so that,

€y =€y =€, =7,, =0

Now observe that,

Wiyy =Vyxsy +0 and w

>Xy oXy

so that,

Yyox = Txoy =2-6

=Vyox -6
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The only non-vanishing equilibrium equation is for the z direction and it becomes,

The function, v, can be introduced to represent the two stresses, T, and ty, with a single function as,
Tx =W(X9y:e)’y and Ty =_W(X’y:e)’x

Note that, when the stresses are defined this way, the equilibrium equation above is automatically
satisfied. The boundary conditions on the lateral surface are,

X =0, -cos(a)+ r--sin(a)

Y

o, ~sin(a)+ r-cos(oc)

where a is the inclination of the outward unit length boundary normal vector to the x axis so that on the
boundary progressing in a counter-clockwise direction,

dx = -ds- sin(a) and dy=ds- cos(a)
The shear stress at the boundary must be in the direction of the tangent to the boundary so,

. dy dx dy dx
T,cos\o)+ T, s\ )=17, " ——-T, " — =V, —+ VY, ~—= ’s=0
creos(a)e 1y sina)= vy Sy Dy Sy,

Consequently, 1 is constant on the simply connected boundary. The constant is usually set to zero and
that will be done here. The net forces, Sx and Sy, and net torque, T, on the cross section are,

Sx = [1,"dA = [y, ,"dA=fy-n, -ds=0
A A s

Sy =ft,-dA=- [y, ,dA=-fy-n, -ds=0
A A S

T=f(X"Cy —y'rx)dA=—f[(x-\|f),X -y +(y-\|/),y —\|1:|dA=—f\|/-(x-nX +y-ny)ds+2-f\|1-dA
A A s A

=2-fy-dA=2- (Volume under y surface)
A

The results given above are valid for both the elastic and the plastic regions of the cross section. The
elastic case is considered next. Hooke’s law gives,

Tx = Ty=__.\|!9x

1 ; 1
=g Wy and vy =

1 .
G
When these results are substituted intoy,, —v,, =2-0, the result is,

VZ\VE\V’XX +\Vﬂyy =-2-G-0
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This is the governing equation for the elastic problem. To illustrate this, take the familiar case of a solid
circular rod of radius a. Let r be the radial coordinate so that,

\|/=C-(a2 -x’ —y2)=C-(a2 —rz)

T, =y, =-2Cy, 1,=-y, =2-Cx

y

Viy=-4:C=-2:G®6 — C=1G-0
resolved =\[Tx2 + Tyz = Ger

T=;9.r;17.@. Z(ﬁ:—raa . TEG9=§' L. L 4

1. =-G0y, T, =G-0-x, 1

Therefore,

and the limit for 0 in the elastic region is when the resolved shear stress at r = a equals k giving,

k

elastic limit —
G-a

T l.g-k-a®, 0

elastic limit — 2

This solution is easily extended beyond the elastic region by setting a “roof” on the circular cross section
whose radial slope is equal to k. The v surface is limited to contact the cone but it cannot penetrate the

cone. In the limit the torque in the fully plastic state is proportional to the volume under the full cone so
that,

T =2 (Volume of cone)

fully plastic

(Volume of eone)= T (area of base)- (altitude)

2 3
T tulty plastic = 2'%61'3 )(k'a)=%-n-k‘a
Then,
T fully plastic 4
T
T elastic limit
P&H give the solution for torques between T|jugic limit @04 T| gy plasiic 10 terms of the angle of twist, 6,
as,
3
1 k k
T=2ma’ k|l-—5 = 0>
4-a G-0 G-a
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The above covers the stress determinations. P&H give several solutions to torsion problems.
Now turn attention to the determination of w(x,y:0), the warping function. Suppose the stress solution
described above has been found so that yx and y, may be regarded as known everywhere in the cross

section. The elastic and plastic regions are bounded by C.

First consider the determination of w(x,y:0) in the elastic region. In this region,

T
w,, =0-y+ =

T
W,y =—0-x+—=
G
so that,
d d d
W X w4y

S ow, "
ds ds Y ds

When w is specified at one point, Po, in the elastic region, the value of w can be found anywhere in the
elastic region by integrating the last equation. The integration is path independent since displacement
compatibility is satisfied. Therefore, w can be found on the elastic-plastic boundary. Note that in the
elastic region,

Consider a point, P, in the elastic region. When the elastic-plastic boundary, I', reaches P, then the yield

criterion is satisfied at P so that T = resolved shear stress = w/sz + ry2 and it is directed parallel to a

point on the boundary, C, curve. This point is found as the point on C whose normal (to C) passes
through P. The stresses at point P do not change with further twisting.

In the plastic region,
Gy,=1,+A"T,
Gy, =1, +A'1,

butt, =t, =0 — G-y, =r1, & Gy, =%k"1, sothat,

Y T T . . .
Tx _ % _constant - Y« =—Yy +C, c¢=0 and in the plastic region,

Ty Ty Ty
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Now the values of w in the plastic region may be found by solving the equations below under the

condition that k = ,/t,” + ryz ,

A
w,, =0-y+ “x

k-ry

w,, =—-0-x+

y

A clever way to accomplish this is indicated in the figure below.

OnRQ 1, = —k-sin(oc) and T, = k-cos(a) so that,

w, 6=y~ g(-sin a( )

w,y:@-x-Jr —ge-cos a( )

Combining these two equations to eliminate % yields,

w,x-cos(oc)+ w,y-sin(oc)= (L—W =0- (y-cos(a)— X 'sin(oc))= 0-d or c(ii_w =0-d
n n
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P&H CHAPTER 4, PLANE STRAIN, AXIAL SYMMETRY

The solution presented here differs from the standard Lame’ solutions found in all elasticity textbooks in
two ways which are,

1. The material is incompressible (both elastic and plastic strains, .". &; = ¢;).

2. The elastic-plastic solution is found.
Take symmetry into account so that in both the elastic and plastic regions,

r = radial coordinate measured from center of hollow cylinder.
= outward radial displacement, the only non-trivial displacement, a function of r only

et

' T Yr9=0
u
€9 =— Yo, =0
: )
c =0 Yz =

Note that ¢,:¢,:e, = er:e,:e, = 1:-1:0. The incompressibility condition yields,

du u D
- +—=0 - u=—
dr r r
and
D

€ =——, gy =—
r ’ 0

r? r?

Denote the mean stress by s so that,

D
6,=-2G-—+s, 6=G"—

+S S, =8
2 b
r T

z

The radial and tangential force equilibrium conditions must be satisfied and they are,

6. -0 1

r 0

=O, _'Ge,e+T
T

ror 0or

2
+_'Tre,e+ +_'Tre=0
r T

In this case the equations are satisfied so long as s is a constant. This is consistent with the notion that a
hydrostatic pressure will not alter the displacement solution for an isotropic, incompressible material. In
order to determine the elastic-plastic boundary the yield condition is required. It is,
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Since k decreases with 1, it is clear that the plastic region (if there is one) lies between the inner radius, a,
of the cylinder and the elastic-plastic boundary at r = p. The elastic region is between r = b and the outer
radius, b, of the cylinder. The last equation is satisfied at r = p so that,

k-p2
2-G

D=

and the condition that o, = 0 at r = b then gives,

2-G-D 2
b2 =k'E_2

S =

The solution in the elastic region (p <r <b) is,

2
u= kp , tangential and axial displacements = 0
2:G-r
2 2 2 2 2
P b P b P
Gre=k‘b—2'(1—r_2), Gz=k'?-(l+r_2), (¢} =k?

For the plastic region, recall that e;:e,:e, = 1:-1:0 and, since all strains start at zero in the unloaded state,
€, :€y:€, =1:-1:0 so from the inner radius, a, tor = p,

S, :Sg:S, =S,:84:5,=1:-1:0

This implies that,

and then in the plastic region,

c,=s-k, o,=s+k, o,=s

Now consider the radial force equilibrium equation,

dG +Gr_66=0 ﬁ=g — s=2'k'ln(1‘)+f([3)
dr r dr r

r

Continuity for o, at r = p (the elastic-plastic boundary) gives,
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The internal pressure, p, applied at r = a, is equal to — o

pei -
Now,

* a2
p = initiation of plastic flow = p‘p _. =k (l - —)

p~ = fully plastic flow = p‘p=b =2-k- ln(k)

so that,

rjr=a

2
S0
b P

b2

a

P&H has a careful coverage for this problem. This includes,

1 Comparison of this solution with Nadai’s compressible material solution
2 Unloading fromp <p<p . If b < 2.22 the unloading will always be elastic.
a
3 The residual stress state can be used to determine the shake-down condition as,
p<p . for b <2.22
a
x b
p<2'p for —=2.22
a
4 The case of unrestricted plastic flow is examined using plane strain and Mises theory (elastic
strains neglected). The solution shows that for p>p the pressure decreases. Therefore, in
the classical sense, the solution is unstable.
5 The strains can be large enough to become “finite” strains. Section 18 of P&H gives a very

good discussion on this point. The conclusion is “finite” strains need not be considered when
using Mises theory but Prandtl-Reuss theory requires they be taken into account if the strains
become sufficiently large.
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P&H CHAPTER 5, PLANE STRAIN, GENERAL THEORY

Shear Lines in Plane Strain
For this chapter only Mises theory (neglect elastic strains) is used and there are no body forces.

Nothing varies in the z direction, w = 0, u = u(x,y) and v = v(x,y) so that the only non-vanishing strains
are,

€. =1 €, =V 1'(=u,y+v,X

X X 0 y oy

The non-trivial Mises theory constitutive equations are,

2-G-¢g, =A"s,
2:G-gy, =A'sy
s, =0
G-y=A'1

Let o be the mean stress so the condition s, =0 gives,
=0 =1.
0=0,=5 (O’x +oy)
1. _
s, =50, ay)
=-_1. —
Sy -2 (Ox Oy )
The von Mises yield condition for these circumstances is,

1.g2,1.42 Z_L.(_ } 2 _ 2
38 +t3s, +T =40, -0, ) +17 =Kk

This form suggests the Mohr’s circle construction shown in the formula sheet, Appendix 4. With the
definitions,

GX+Gy o
o= =
4-k 2-k
2.
0 E%-arctan(—r] +Z
G, -G,

The variables oy, 0y and T and the yield condition are reduced to two variables, @ and 0, so that,
o, =2'k-o + k-sin(Z-G)

6,=2"k-o —k-sin(2-0)
’C=—k'COS(2'9)
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o 1s a dimensionless mean stress while 0 is an angle in the physical plane. The x face is a surface with
a constant value of x on that face. The angle 0 is the angle the x face must be rotated in a counter
clockwise direction to reach the face on which the maximum shear stress acts. The formula sheet
contains a sketch showing the various faces and the stresses acting upon them.

The stresses plotted for Mohr’s circle are N, and T. given in the formula sheet. After a few
trigonometric manipulations these expressions become,

N, =%'(GX +csy)+%-(csX —cy)cos(Z-a)+ t-sin(2-a)
T, =%-(ch —cy)sin(Z-a)—t-cos(2-(x)

It is easily verified that the Mohr circle construction shown on the formula sheet is consistent with the
above equations. The radius of Mohr’s circle in the plastic region is computed as,

Oy +0y

Radius = (Na -
2

2
2_1,( )z 2 12
) +T, =46, +0, ) +17 =Kk

When the stresses in terms of ® and 0 are substituted into the force equilibrium equations, the result is,

®,, + G,X'cos(2-6)+ G,Y'sin(2-6)= 0

o,, - 6,y-cos(2-9)+ G,X-sin(2-6)= 0

’y

Consider a differential length line segment in the x-y plane. The changes along the line (along s) of ®
and 0 are given by,

(Das = O)’x : Xs + ('O:y ' y;s ) e = eax : X’s + e:y ' y:s

’s

The last four equations can be written in matrix form as,

X,s Yos O 0 (0, ] [o,
0 0 X, g Vs ®,y 0,
1 0 cos(2-0) sin2-0) | |6, | |0
0 1 sin(2-6) —cos(2-0) 0,, 0

Yss
X

Now investigate to find the two slopes of the line, , that cause the determinant of the coefficient
e

matrix to vanish. If the slopes are real and distinct the equations are called hyperbolic equations. It is
shown below that this is the case. First, set the determinant of the coefficient matrix to zero.
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Xoy Yo 0 0

0 0 X Vs

EN

1 ® cos(r?_'Zﬁ ( . )

0 10 siwf2-2)0 (- )

=X, (2 x) y, cos 20 (y, )sin20 €0 )

The roots are found as,

ﬂ_ﬁ= —cos(2-9)¢1
sin(2-0)

As the roots are real and distinct for real values of 0, the equations are hyperbolic equations. Let,

First shear direction, dy _ M

ds sin(2-0)
Second shear direction, dy _ M
ds sin(2-0)

N.B. — The slopes are perpendicular and the first shear direction is obtained by rotating the direction for
the maximum principal stress by 45° counter clockwise.

When a line in the x-y plane has one of the above slopes, the augmented matrix of the above matrix
must have a rank of no more than two in order to avoid a contradiction. This is ensured for the first
shear direction by setting the following determinant to zero.

X, —cos(2-9)+ 1 X, 0 o,
) sin(2-0) ) ’
0 0 X, 0,,[= 0
1 0 cos2:0) 0
0 1 sin2-0) 0

Expansion of this determinant yields,

{0, -cos(2-0)) - (%ﬁ';’))-x,s-(em-sm(z-e)p 0 x )= xdon, —0.)=0

Therefore, ((o - 6)= constant along a line whose tangent is parallel to the first shear direction. Such a
line is called a first shear line.

—005(2-6)—1

M must be replaced by ———,—5— in the above
sin(2-0)

sin(2 -9)
determinant. Expansion of the determinant yields ((o + 0)= constant along a line whose tangent is
parallel to the second shear direction. Such a line is called a second shear line.

For the second shear direction,
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The figure below shows the relationships between the slopes of the shear lines and 6. A family of shear
lines refers to either a set of first shear lines or a set of second shear lines.
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For the sketch above, the shear lines AB and CD are first shear lines while AC and BD are intersecting
second shear lines. The conditions along shear lines derived above require that,

©y -0, =og — 0, =h 0, =%(1-h)
Oc-0c=0p -0 =k 0y =L-(m-h)
0, +0, =0c +0. =1 — 9c=%'(1—k)
op +0g =0, +0, =m 9D=%'(m—k)
Define,

BAC =VYa ‘ec =%'(k‘h)

Bep =65 —0p =%'(k_h)

The fact that these two angles are equal is called Hencky’s theorem: “The angle formed by the tangents
of two fixed shear lines of one family at their points of intersection with a shear line of the second
family does not depend on the choice of the intersecting shear line of the second family.” A corollary to
this theorem is that if a family of shear lines contains a straight line, it consists entirely of straight lines.

A second theorem, based on the above sketch is self evident and is called Prandtl’s Theorem: “As we
proceed along a fixed shear line of one family, the centers of curvature of the of the shear lines of the
other family form an involute of the fixed shear line.”

It is clear from the above figure that if ABCD and A’B’C’D’ are first shear lines, point T is a point on
the envelope of the first shear lines and the second shear line through T has a cusp there. The envelope
of the shear lines of one family is the locus of the cusps of the shear lines of the second family. This
means the envelope of the shear lines of one family is a limiting line across which the shear lines of the
other family cannot be continued

Boundary Conditions in Plane Strain



29

A figure from P&H, in the formula sheet, shows the sign convention used everywhere except for the
Mohr’s circle construction. For this sign convention the stresses at a boundary point in the plastic region
whose normal is inclined by the angle o, measured counter clockwise from the x axis, may be expressed
in terms of ® and 0 as follows,

N=2-k-co+k'sin(2-(0—a))
T=—k-cos(2-(9—a))
N'=2-k-0)—k-sin(2-(9—a))

where N’ is the interior normal stress at the boundary. When, as is usual, only T and N are specified on
the boundary, the values of ® and 0 are obtained as,

This solution has two roots shown in the figure on the formula sheet. The value of N’ is governed by the
choice of sign in the equation for 6 above

One must assume one of the solutions and proceed to solve the problem at hand. It is usually possible to
“guess” the correct solution. In the long run, an incorrect choice will appear based on other boundary
conditions not being satisfied and the correct choice can ultimately be found.

The following section discusses methods for solving for the stresses in the plastic region. In the section
it is assumed that the proper choice for @ and 6 on the boundary has been made.

Approximating Schemes for Determining Shear Lines in Plane Strain

An interesting property of hyperbolic equations is that specification of proper boundary conditions on
part of the boundary determines the solution in part of the region. This region is called the domain of
influence for that part of the boundary. This is very different from elasticity. The difference is because
the elasticity equations are elliptic equations (no real lines for characteristics). There are three classical
formulations for finding, in principle, the domain of influence. Each formulation has a different type of
boundary condition.

First Boundary Condition Problem, the Cauchy Problem

o and 6 are specified along a line whose slope is nowhere equal to 6 or 6 + Z-. The sketch below shows
a case of this boundary value problem.
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Arc c is the boundary and the light full lines and the dotted lines indicate first and second shear lines,
respectively. The values of ® and 0 are specified at points (1,1) ... (6,6). The objective is to find the
shape of the domain of influence with corners at (1,1), (6,6) and (1,6) as well as the values of ® and 0 in
the interior at all the indicated points. Consider point (1,2), the conditions along the first and second
shear lines through this point yield,

o(1,2)-001,2)=(,1)-06(,1)
0(1,2)+0(0,2)=0(2,2)+6(@2,2)

These equations may be solved to give,

o(1,2)= 1 (@22)+o(,1)+0(2,2)-0(,1))
0(1,2)= 1 (0(2.2)- o(,1)+0(2,2)+06(,1))

All the terms on the right-hand side of the two equations above are known so 03(1,2) and 6(1,2) are

determined. The physical location of (1,2) can be approximated by the intersection of the first shear line
through (1,1) and the second shear line through (2,2). The same procedure can be followed for points
(2,3),(3,4), (4,5) and (5,6). With the values of ® and 6 known and the location of the points
approximated. The same procedure can be repeated for points (1,3), (2,4), (3,5) and (4,6). Eventually
point (1,6) is reached and the problem is solved. P&H present a refinement for the point location
calculation but these days no one works these problems graphically.

Second Boundary Condition Problem, the Riemann Problem

o and 0 are specified along a line that is a first shear line. . In addition, an intersecting second shear line
is defined along which 6 is known. The sketch below illustrates this boundary condition problem.
and 0 are known for points (1,1) ... (1,4) and 0 is known for points (2,1) and (3,1). The domain of
influence is bounded by points (1,1), (1,4), (3,4) and (3,1).
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Consider point (2,2)and apply Hencky’s theorem to find,
0(2,2)-0(1,2)=0(2,1)-0(1,1)

so that,

0(2,2)=0(1,2)+6(2,1)-0(1,1)

Since all terms on the right-hand side are known 0(2,2) is determined. The location of point (2,2) is
approximated from the intersection of the first shear line direction through (2,1) and the second shear
line direction through (1,2) The value of ® is found from the condition that ® + 0 is constant on the

second shear line through point (1,2). This procedure can be continued through the entire domain of
influence.

Third Boundary Condition Problem, the Mixed Problem

Specify a first shear, c-c in the figure below, and another line y—y, not along a shear line, along which
o or 0 is specified.

If, for example, o is specified on y—y, then,
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o(1,2)+0(,2)=0(2,2)+602,2)

and then,
0(2,2)=0(1,2)- 0(2,2)+6(1,2)
This sort of scheme can be used to extend the solution through the domain of influence.

Velocity Fields in Plane Strain

On the shear lines there is no axial strain rate. The figure below shows two points, A and B, along a first
shear line.

vy

The condition that the extension rate vanish along this first shear line is,

Vi,s —V,0,,=0

>S

and for a second shear line,

Vo, + V0, =0
1. The velocity along a shear line is constant if,
A, It is straight, 0, = 0 along line.
B. It is a streamline, V e, famity = 0
2. P&H give a geometric scheme for finding velocities that is obvious.
3. A rigid-plastic boundary must be a shear line or a limiting line.
4. On a rigid-plastic boundary v, must be continuous, therefore = 0. If v; is continuous then the

resolved velocity is zero. Therefore, v; is usually discontinuous across a rigid-plastic
boundary
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Families of Straight Shear Lines in Plane Strain

An apparently trivial case is for the first and second shear lines to form a rectangular grid aligned
with the x and y axes. In this case the velocity field is,

v =1y), vy=gx) where both f(y) and g(x) are arbitrary
When only one shear line family is straight, the shear line pattern is called a fan. The simplest case

is the centered fan shown below. The straight shear lines are taken to be first shear lines so that the
second shear lines are concentric circles centered at point O.

Q°

- -

On each of the first shear lines 0 is constant and, since ® — 0 is also constant, ® is constant.
For the second shear lines, ® + 6 = constant = ¢ in the entire fan.

o 1s independent of r as are Oy, Oy, T.

The stresses in this centered fan are,

6,=0,=2k-o=2k-(c-0), 1,=k

For the velocity components v; = v; and v, = v,. The inextensibility conditions require that,
ve=-h’(6), vq=h(8) +g(r)

If there is a plastic region at point O and the velocity at point O is v directed as indicated in the
above figure, the functions h(0) and g(r) are determined as,

h(®)=vo -sin(y-0), g(0)=0
and then,
v, =vocos(y —0), vy =vq siny-0)+g) g0)=0

A case of a non-centered fan is shown in the figure below.
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The first shear lines are all tangent to a base curve while the second shear lines are involutes of the
base curve. Like the centered fan, ® + 6 = c in this fan. The “origin”, point O, is chosen where 0 is

equal to zero and the coordinate r to point Q is measured from the involute going through O. With
this coordinate system the solution for the stresses is the same as for the centered fan and the
velocities are given by,

vi=-h’(0),, vq=h(6) +g(r)

Before giving an example of a straight limiting line, some characteristics of limiting lines are
reviewed here. The envelope of one family of shear lines is the locus of the cusps of the shear lines
of the other family. Consider a limiting line with normal stress N, shear stress T and interior normal
stress N°. P&H discuss the nature of the derivatives of the stresses and velocity with the result that,

IN_, T _finite [N = infinite

on on on Vol . fini
IN s N on = 1nfinite
—— = finite —=0 —— = finite

ds Js Js

The problem described in the figure below is due to Prandtl and contains a straight limiting line.

V
T
A 4 £ AL LELA LA
= Y F———————— N
b ]
e -
e e, o orr ey
.
|
|- f —o— Sy G——

The solution given by Prandtl is not valid near x = 0 or at the ends x = =150 it is best to think of the
case where 1 >> h. In the “valid” regions,
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The shear lines are cycloids.
Lines of Discontinuity in Plane Strain

Bending of a beam composed of a Mises material will develop a stress discontinuity that is familiar
to mechanical and structural engineers. In this case it is clear that the discontinuity is the remains of
an elastic region and should be regarded as an elastic, inextensible filament. P&H show that this is
true for all stress discontinuities in plane strain.

A formal approach to this plane strain problem can be based on the figure below where the different
sides of the discontinuity are numbered 1 and 2.

1
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The conditions that the stresses normal (N) and tangential (T) to the stress discontinuity are
continuous lead to (see formula sheet, Appendix 4),

20, + sin(2 : (91 - a))= 20, + sin(2-((92 - a))
cos(2-(91 - oc))= cos(2 : (62 - (x))

Prager has determined that the roots of interest here are given by,

0, =0, + sin(2-(91 - a))
2-(0, —(x)=—2-(91 —(l)i 2-n-m, nisan integer

These conditions are called the Prager jump conditions. Note that o = %-(91 +0, )$ n- 7 so that the

line of discontinuity bisects the corresponding shear lines on each side of the discontinuity.

The sketch below is for a problem where a stress field may be found using a stress discontinuity.

The wedge is loaded by the uniform pressure, p, on the right flank. Referring to the formula sheet,

OnOA:a=pf, N=-p, T=0
OnOB:a =n-f, N=0, T=0

yields,

Although it is possible to proceed on a mathematical basis, like P&H, it is pretty clear that on the left

flank the interior normal stress is compressive. The maximum normal stress on the left flank is zero so

the value of 0 is (% ‘- [3) and the upper sign must be taken for the above equation for OB. Since the
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discontinuity, OC, must bisect the first shear lines, the lower sign must be chosen for the above equation
for OA. Consequently,

=

0,=p-7%, m1=%.(_%+1) and 92=%'7t—[3, Wy ==

and the first jump condition then gives,
p= 2-k-(1 - cos(2-B))

For the velocity field, recall that OC must be treated as an inextensible filament. It also makes sense to
set vy = 0 on this filament. It turns out that v may be an arbitrary continuous function. It is clear that
the velocity at any point P at the intersection of the shear lines from R and Q can be found from the
inextensibility of the shear lines.

P&H go deeper into the discontinuity study but it won’t be pursued here except to mention an obvious
requirement of the solutions with stress discontinuities. The work done on the body by the presence of a
discontinuity must be positive.

One solution with stress discontinuities is shown below because it will be compared with another
solution later.

The top pressure, p, for incipient plastic flow is given in P&H as,

p=2-k-(1+sin([3))
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P&H CHAPTER 6, PLANE STRAIN, SPECIFIC PROBLEMS

Punch Problem

In DFA

o, =xk ' N . 1
0 AFis al” shear line Oppa = =%

G =

Ty: 0 DF is a 2™ shear line Opps =— %

AG must be a first shear line and

ENE

— n
O acc =Oppa + > =t

Using the condition that ® + 0 is constant on a second shear line,

Oppa +Oppa =®ace +Oace = Oace = —%'(1 + “)

In AGC:

6, =2-k-®yge +ksin(2-0,50) 6, =-n-k

o, =2k 0,5 —k-sin@-0,6c) — o, =-Q+n)k
1:=—k-cos(2-9AGC) =0

And the uniform pressure on AB is (2 + n)- k

Two alternative shear line solutions are shown below. The computed punch force is the same as for the
above set of shear lines.
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SO

The sketch below is for a variation on the punch problem. A uniform pressure, p, is applied on AB.
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Obviously, the solution for the pressure is obtained from the punch problem by replacing 7 by y so that,
p=2-k-(+y)
Lateral loading on part of the flank of an obtuse wedge is shown in the sketch below.

The pressure for incipient plastic flow is found by replacing y in the preceding solution by 2+ -7 to
obtain,

p=2-k-(+2-p-%)

Earlier a solution for this problem was presented in connection with studying stress discontinuities.
P&H give the figure below, their Figure 62, comparing the two solutions.
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An extremely important conclusion can be drawn from this comparison. The point is made by the
following quote from P&H.

“As is seen from Fig. 62, the pressure value corresponding to the discontinuous stress field for the
obtuse wedge is smaller than that corresponding to the continuous solution. As the pressure is gradually
increased, starting from zero, one might therefore expect that plastic flow sets in under the smaller
pressure corresponding to the discontinuous stress pattern before the pressure has reached the higher
value required by the continuous stress pattern. This is not the case, however, because there is no field
of plastic flow associated with the discontinuous stress field.”

A frictionless extrusion problem for reducing the thickness of a slab by 50% in steady flow is shown
below. Many forming and machining operations may be analyzed as steady flow problems.
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o, =7=00n OA & OA'

X

N =—2-k0nOA&OA'andw=-% =12

OA is 1" shear line
onABm=—%-(1+n) 6=3r o, =-Q2+n)k c,=-mk 1=0

The extrusion pressure, p, is then given by,
p=-(+3)k

and P&H give a corresponding velocity field.

A frictionless wedge indentation problem is shown in the figure below.

For this problem, as the wedge indents the surface, the configuration is simply magnified. P&H call this
kind of problem pseudo-steady plastic flow.

AE=AB=a

h=a-sin(B—a)

t=a-cos(d)-h=a-cos(3)-a-sin(B-a) — a=cos([3)_:,in([3—0t)
t-sin(B—Ot)

hoesnb ) ) - ) (- ) cosp - )+ sin)
' ‘ t-sinlf = o) (cos(B = o)+ sin
b=(a-cos(® - a)+a-sin(®))sin}-a) — b= cos(B)-sin(B - a)

v, =0, Vz'sin(ﬁ)=1-sin([3) — V2=\/E-sin([3)

The incompressibility condition is,
L.h-(a-cos( - o)+ h-tan())=L-t*-tan()
This may be reduced to,

sin(ﬁ - (1)- (cos(ﬁ - (1)+ sin(B - (x)- tan(B))= tan(B)' (cos(ﬁ)— sin(B - OL))2
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This equation was solved numerically and the resulting plot is given below,

FIGURE 71 FROM PRAGER AND HODGE
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P&H give the velocity field for this problem.
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P&H CHAPTER 7, PLANE STRAIN: PRINCIPLE OF VIRTUAL WORK

Limit analysis is a mathematical method used to find upper and lower bounds on the limiting, plastic
load state.

Proportional loading is assumed. That is, all loads are proportional to a single monotonically increasing
parameter.

The Principle of Virtual Work plays a large role in the limit analysis theorems. It is described below and

subsequently proved.

Principle of Virtual Work:
1. Assume oj; and v; are continuously differentiable with respect to x and y.
2. No body forces.
3. ojj satisfies equilibrium conditions, Gjj,; = 0.
4. The velocities are used to determine the strain rates
€ =Viny » éy =V, Y = Visy + Vyox
5. Boundary loads equilibrate with stresses at boundary
X =0, -cos(a)+ r-sin(a)
Y=o, +sin(a)+ - cos(a)
Then,

{(ox-sx to,E, +r-~'{)dA=£(X-VX +Y-v, )ds

or the rate of work absorbed by the body equals the rate of external work done on the body.
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Proof of theorem:

f(csx "€, +0, € +r-\'()dA=f(ox Viox T Oy Vo, +T Vo, +T'Vy,x)dA
R R

O, "V +’L"Vy)X + (Gy 'Vy + T Vy )y - Vi '(GX,X +T,y)— Vy '(Gy,y +’[,X):|dA

Oy "Vy + t-vy)nX + (csy Vy o+ r-vx)ny]dB
-cos(a)+ r-sin(oc))'vX + (csy -sin(a)+ r'cos(a)) Vy]dB

(X-VX +Y'Vy)dS

Il

W, W-e, W-~e, F—
=
><Q

The theorem is also valid for rates of the stresses so long as the equilibrium equations are satisfied in
time. That is,

{(c'sx E 4Gy Ey +t'y)dA=£(X-VX +Y v, }ds

Influence of discontinuities on Principle of Virtual Work:
Stress discontinuities:
Across a discontinuity the normal and shear stress components are continuous so, if v is

continuous, there is no contribution to the Principle of Virtual Work.

Velocity discontinuities:

np is directed from sub region Ry, into sub region Ry ty is obtained from np, with a 90° counter
clockwise rotation. np and tp are unit length vectors and,

(k)

h
\& = Vt( )

N ) and TH) are positive if directed like ny, and t,,

The contribution to the work is T®)- @t(k) - Vt(k)) dly,

Principle of Virtual Work with stress and velocity discontinuities:
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{(cx & 40,8, + T )dA =£(X-VX +Y v, }dS+ EthkT(hk) 6.0 - v, 9,
and

{(@X G 46,6, +17)dA =£(X-vx +Yov, )dS+ EthkT(hk) .0 -v. 9,

Plane Strain, Limit Analysis Using Prandtl-Reuss, Theorems of Greenberg, Drucker and Prager
First boundary condition (BC#1):  Arc along which surface tractions are specified

Second boundary condition (BC#2) Arc along which displacement vector must vanish

To have a nontrivial problem part or all of boundary must be BC#1.

Proportional loading

Contained flow: linearized strains and displacements are acceptable

Looking for the load that causes impending plastic flow. At impending plastic flow, plastic strain
increases under constant surface tractions for the first time.

(surface traction at impending plastic flow)

S = safety factor = -
(ref erence surface traction )

where the reference surface traction is less than surface traction at impending plastic flow (S > 1).

Define a statically admissible stress field as one which,

1. Satisfies the force equilibrium equations
2. Satisfies BC#1
3. Satisfies the yield inequality, (Gx - Gy)Z +4-1° —4-k? <0, everywhere

Obviously, the actual impending plastic flow solution satisfies the statically admissible stress field
conditions. Let highest multiplier of the reference surface traction that is statically admissible be m;.

First limit analysis theorem:

mg < S

Define a kinematically admissible velocity field as one which,
1. The incompressibility condition, vi,; = 0

. Satisfies BC#2
3. fXvy+ Yy, }dS>0
B
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Obviously, the actual impending plastic flow solution satisfies the kinematically admissible velocity
conditions. For this kinematically admissible velocity field compute,

Vt(k) _Vt(h"dlhk

[T-dA+Y [

R Ly
f(X~vX +Y‘Vy)dS
B

mk =k'

where

1"=\/(VX,X -vy,y} + (Vx,y + Vy,x)Z = maximum shear rate

Second limit analysis theorem:

An illustrative problem applying the above two theorems is shown below

| |

1] ///

From the shear pattern on the right side of the above figure,
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mk=k-6-a-ﬁ)=1.5-k
(455) T

so that,
1.26-k 1.50-k
=S=
T T

The above two limit theorems are proved below. This is accomplished in two steps. The first step
proves three auxiliary theorems and the second step uses these theorems to prove the limit analysis
theorems.

First auxiliary theorem:

During incipient plastic flow &;; = 0 in the whole body.

Second auxiliary theorem:
0

y 9
stresses and plastic strain rates at incipient flow. Then,

bo-0.0)e by -0, )i, e -0 ) =0

Third auxiliary theorem:

Let GXO, o, ,1° be a statically admissible stress field while o, Gy, T and ¢, ", éy”, y'' are the actual

Let s'x* , € y*, " denote the strain rates from a kinematically admissible velocity field v, , Vy* and oy, Oy,

7 the actual stresses. Then,

Oy '€ +0,°¢, +1y <k-I'" where I =\/€X - £, ) +7
Proof of first auxiliary theorem:
Assume stress rates don’t vanish while X and Y vanish and find a contradiction.

In this proof let the velocities, strain rates and stresses be the actual values at incipient plastic flow.

Apply virtual work theorem,

0 0
(G5 +6, 6, +io7)dA =f(X-%Y-vy)dS+ » fT/(“f-'(vt(h) v, ®)a,,
R B Ly

S0,
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f(éx 'éx +6Y.éy +Ty)dA=‘}£B(Gx _dy)(‘éx _éy)+ T'YJdA
[%'(GX _6y)(éx'_éy')+’t".Y']dA+f[%'(GX —('yy)(éx”_éy")_l_ T’Y”]dA

]
o —

=J‘L.Kgx_sy)l+4.t2 dA+f—[( )+4tr]dA
4G
1 A o ] A
=£R-st—sy}+4-t2_dA+{ﬁ'EKSX—sy)z+4'rz:|dA
0
1 . o] Aod
={—-[(sx—sy}+4~r2_dA+{ﬁ-d—MdA

4-

Q

This integral must vanish in order to satisfy the virtual work condition. This requires that,
6,-6,=0 and t=0, or 6,=6, and =0

X y > X y

and 0 ,, equal to zero.

When 1,, and t,y vanish, the force equilibrium equations yield o, i

Consequently, 6, =6, = constant and T = 0 and the requirement that BC#1 requires X and/or Y =0 on

part or all of the boundary leads to a contradiction unless,

6,=6,=1=0 in the entire body at incipient plastic flow
Proof of second auxiliary theorem:
IE(;X —Gxo)éx + Gy —Gyo)éy +(1: —TO)?

Obviously, I = 0 in the actual elastic region, otherwise (Gx -0 y7 +4-70 =4k
éxn=_éyn s éx”=%.(éx”_éy”)’ éy”=%.(éy”_éx”]

oo )by o e -6 )
ﬁ{@fcx)@y N, -0, )ra6-x)e]

%-I=4-k2 - Gxo —cyo)(csx —cy)—4-r° ‘T

Use the Schwarz’ Inequality, see formula sheet (Appendix 4), with,
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(5x0 _Gyo)((’x _Gy)+ 4-1° -rs2-k'\/($X° _GyO) +4-1° <4-K2

then

ﬁ-IzO andsinceg>0, I1=0
A A

Proof of third auxiliary theorem:

G, & +GC, &, +T°7 =%'(GX —Gy)éx - )+r-}'/
Use Schwarz’ Inequality with,

*

_ 1. _ . _1..* *) .
ax =72 (Gx_Gy)’ ay =1 1 by=3 @x —ey } by=7

to obtain,
k2 [ex* _éy*) +"Y*2] 2%'(Gx _Gy)éx* _éy*).‘”f"‘y*

so that,

* * . % . % .k Lok %2
o,'¢ +0,¢€, +1v <k'I' where T =\/€X —ay)+y

X “x y %y
Proof of first limit theorem (for m):

From the second auxiliary theorem,

f[(cx -0’ )-éx" + (Gy -6,° )-éy" +(t-1° ) \'("] ‘dA =0

R

Since, at incipient plastic flow, 6, =6, =1 =0 (from first auxiliary theorem), Hooke’s law shows
that £ ,'=¢,'=7"=0. Therefore, in the above integral the plastic strains can be replaced by the total
strains. Then the virtual work theorem applies. Note the actual stresses are in equilibrium with

S-XandS-Y onBC#1. Also 6,°,6,°, 1° are in equilibrium withm, - X and m_-Y . Therefore,

(S - my )f(X "V, + Y-Vy)ds + > f(F(h’k) - To(h’k)) (VT(h) - VT(k))dlhk
B Ly

S-§ @( Vet YoV ) ds > 0 since the actual stresses do work on the body.
B
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In addition fT(h’k) : (VT(k) - VT(h))dlhk >0 and T" =k so that,

Lhk

LT (0 oy O )al, = [T (4,0 - v 0 Yal,

Lhk Lhk
since T° M) <k . Therefore,

ELf(T(h,k) _ TO(h,k)) @T(k) _ Vt(h)) dl,
S-m, = i

) | f(X-VX+Y-Vy)ds =0
B

This theorem is implemented by finding a stress field that is statically admissible, then the loads for this
stress field are less than the actual load.

Proof of second limit theorem (for my):

From the third auxiliary theorem,

f(cx & to, 'éy* +T'Y*)'dASk'ff*-dA where I Z\/(éx* -éy* )2 +97
R R

Use the virtual work integral and the fact that the actual stresses are in equilibrium with S- X and S-Y
on BC#1.

S-p v, Yoy, Jas+ S TG oy O )dn <k it da
L, R

B

As the first integral is greater than zero,
ST o v @ )y sk T dA
R

Lhk
g(?(-vx* +Y-Vy*)ds

S<

and the absolute value of T®*) < & the bound on S may be written as.

(h

Vt(k) - Vt .dlhk

[T-dA+3 [

R Ly
f@(-vx +Y'Vy)dS
B

Ssk' Emk

P&H show that mi = S when VX* and Vy* are the actual velocities.
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This theorem is implemented by finding a kinematically admissible velocity field and making the
integrations necessary to determine my. The loads m, - X and m, Y are greater than the actual loads at

incipient plastic flow, S- X and S-Y .
As an illustration of the limit theorems a relatively interesting example follows.

i

C : :

‘--—.___6.

I——

c

/s

A -

The solution presented earlier for the elastic-plastic version of the Lame’ solution gave the incipient
plastic flow pressure, p , as,

p’ =2-k-ln(£)
a

Both a kinematically admissible and a statically admissible field are found using this solution. Also the
stress field can be extended into the rigid part of the motion. And it turns out that,

ms=S=my

so the exact solution is p . This kind of scheme can be used to check solutions obtained by other
methods.

Another illustrative solution that will be discussed is shown below.
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The upper bound on T is improved using this kinematically admissible velocity field.

A simple example using beam theory is presented below

4

s X
I

Statically admissible:

M(X)= R-x =P, -<x - a>
M(@)=Mg,, M()=-M,

Take reference value of P as one, then my will equal the kinematically admissible incipient plastic flow

load.
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P, = k=Mo'(0‘+B)+Mo'B’ a=§, [3=i’ a+2-[3=8'(1+a)
o a l-a a-(l-a)
— P —&.l-i-a
T a 1-a

The above problem was simple but contemplate two problems from P&H, Chapter 7, Problem 9 shown

below.
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P&H CHAPTER 8, EXTREMUM PRINCIPLES

No body forces

Elastic and plastic incompressibility

Assume continuity and continuous first derivatives of stress and velocity
Cartesian tensor formulation

A repeated Latin index in a term implies summation on that index

,x denotes partial differentiation with respect to x

The above leads to the following forms for some of the important equations
&; =%-(uiaj +uj,i) note that vy =2-g
0,, =0 e O =T

XX Xy

9; = Kronecker delta =1 if i = j, = 0 otherwise

ad ;&

0;,; =0 for force equilibrium equations

n. =i" component of unit length vector along exterior normal to surface element
T

i™ component of surface traction vector
B

s;°s; =2-k* von Mises yield condition

IS
T

s;°$; =0 mno work hardening condition

) | :

€. = —(s +A-S. ), A >0, Prandtl - Reuss equations
. G ij ij

s u>0, Misesequations

f F, -dV = 95 F-n,-dS F may be a scalar, vector or tensor
v S

: _ 1

ifo > i J0=’ € ij = _2u( i ju'l'a joi )G ijG= ji

then
{Gﬁ-sij -dV =.[((sij-ui )j 'dV=9:"u'“i -nj-dS=E£>'Ti ‘u, -dS

Extremum Principles of the Prandtl-Reuss Theory (see Section 38 of P&H)

Definition for statically admissible stress rate field, Gijo .
1. c'sijo, i=0
2. S .gijo <0 whenever s;
3. BC#1 on St

Definition of a kinematically admissible strain rate field, éij*,

1. Derived from a velocity field, v; , that is incompressible
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2. BC#2

Theorem 1. Among all statically admissible stress rate fields the actual one minimizes the expression,

K°® =

1
—_—" Sl'Sl'dV— Glo'Vl'n'dS
4-G {J J Sf j ]

Theorem 2. Among all kinematically admissible strain rate fields the actual one minimizes the
expression,

* *

L = %-fdu éij* -dV - fTi v, -dS, c'sij* found from éij* using Prandtl — Reuss equations
v Sy

Three Dimensional Limit Analysis (No discontinuities):

Statically admissible stress field, Gijo ,

2. BC#1
3. SU‘SU SZ'kz

Find my as largest value to satisfy the three conditions
Kinematically admissible field, Vi*,

1. Incompressible
2. BCH#2, vi=0on Sy

3. SfTi-vi*-dS>0

Find my using,

Three Dimensional Application of Limit Analysis

The only application I am familiar with is for a Bingham fluid. Don Wood showed that the plasticity
limit theorems apply to a Bingham fluid and he applied the theorems to the initiation of movement of a
dense sphere (radius = R) suspended in a less dense Bingham fluid. The objective was to find bounds
on the sphere density that initiates settling (cuttings in a drilling mud during cessation of drilling).

1965 PhD Thesis, Rice University,
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Donald Bayne Wood, “Incipient Motion of a Spherical Body Suspended in a Bingham Material,”
Mechanical Engineering Department, May 1965

The critical parameter, C, is

_ R- (Ysphere = ¥ fluid )
k

C

Wood’s result m,=575=C=<1225=m,

A. N. Beris, J. A. Tsamopoulos, R. C. Armstrong and R. A. Brown, “Creeping Motion of a sphere
Through a Bingham Plastic,” J. Fluid Mechanics (1985), vol. 158, pp 219-244

Their result, obtained numerically, is C = 10.49 which is pretty close to Wood’s kinematically
admissible solution.
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STARTING HILL’S TREATISE

Yield Surfaces

If the material is isotropic the yield surface must be expressible as a function of the invariants,
f(J1, J2, J3) =0

The invariants, in terms of the principle stresses. are,

Js =—(G1'52 + G, 03 +03'01)

J;=0,"0,"0;

Percy Bridgman, 1944, showed experimentally that a material’s yield stress is, approximately,
independent of hydrostatic pressure. Therefore, many formulations in plasticity theory are in terms of
o'; where,

Then the yield surface is usually expressed as follows,
f(]’z, J’3) = 0
Jy =- (0'1 ‘6'y +0',°6'y + 6'5°0", )= 1 6’

(S [ R B BN v 3 ) 3 13)=1_v.|.v
Jy =000 =3 (?1 +G6, +0; 3040 jk Oy

2467 +0" 2)=l-cs' o'
1 2 3 5> 00

The Bauschinger effect is that if a material undergoes plastic flow for a particular load a subsequent
reversed loading will induce yielding before the load magnitude is fully reversed to the yield value for
the first yielding. Recalling the first structure that was analyzed in the series, it is not surprising that
most materials exhibit a Bauschinger effect. This effect is neglected for the moment so that f(J’, J’3)
must be an even function of J’;.

It is instructive to visualize the yield surface in principle stress space. Consider the sketch below,
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The dashed line makes equal angles with the Cartesian principle stress axes. Since the sum of the

squares of the direction cosines is equal to one, these direction cosines are equal to E and the angle is

54.74°. Plane II is perpendicular to the dashed line and includes the origin. Therefore the angle

between the IT plane and the principle stress axes is 90 — 54.74 = 35.26° and the equation for the plane
s,

o,+0,+0,=0

OS is the vector (01, 02, 03)
OP is vector (0'1 ,0'5,0'; ) in the IT plane

PS is vector (o, 0, 0) which is parallel to the dashed line and perpendicular to the IT plane
Clearly, the yield surface is a right cylinder and its intersection with the P plane defines the curve C

The sketch below is in the IT plane and C defines yield surface.

\ ._N__.'/
-2 -
> \\ /")\</‘/ '
\
/ ™~ \\: ,f ./_I-P
______ 3/ ::ﬁ:: -
K A 1N
Al A v
/’ / \\ \('-
o 4 ! %
o __,ir,.
-0

From isotropy of the yield surface C must be symmetric about LL’, MM’ and NN’
From no Bauschinger effect C must be symmetric about the perpendiculars to LL’, MM’ and NN’ so
that every 30° section has the same shape.

Lode (1926) introduced a parameter, u, that is helpful for designing some experiments.

n= 210301 =0y =— 3-tan(9)

0, =0,

If an investigator is certain the material being tested is isotropic with no Bauschinger effect then
experiments are required only over the range 0 <0 <30° (0 < u <-1). To illustrate,

u=0,0=0,0,=1-(c, +0,) = (pureshear), 1-(c,-0,,0,-0,,0 )+o=1(c, +0,)

p=-1,0=30°0, =0, — (uniaxial), 1-(5, -05,,0,0 )+o =0,
Possible experiments:

1. Combined torsion and tension of thin-walled tube
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o = tensile stress, T = shear stress

1. l.s2 2 =1. 1.52 2 =
O =7'0+4/4°06"+1T , 0,=5'0-4/4°0"+1", 0;=0

2.
pr L
6,=—, 06,=0, oy=—-—
: t 2 P 2emeret
L
p=—p—-l
TrTp

Two yield surfaces:

1. Tresca (1864)

Order principle stresses so that 6, = 6, = 65 then yielding occurs when o1 — 03
=( twice the maximum shear stress) reaches a critical value. A more general form of the
Tresca condition that is virtually never used is,

4.1, -27-75% =36-k*I," +96-k* T, - 64-k° =0

2. von Mises (1913)

I, =160 =k*, or (6,-0,V +(0, -0;) +(0;-0,f =6k

For tensile test, yield point tensile stress = V3 -k and k = shear stress yield point stress

When the two yield surfaces are compared, the yield points are usually adjusted so that the tensile yield
point stress is the same from both criteria, see the figure below.

In 1931 Taylor and Quinney published a paper which is always cited as part of the comparison of the
Tresca and von Mises yield surfaces. The sketch below shows the principal result.
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Strain-Hardening, Standard Theory

1. Assume isotropy is preserved
Assume no matter by what strain path a given plastic stress state is reached, the final yield
surface locus is the same. This is not consistent with dislocation theory. With this
assumption a single infinity of distinct non-intersecting yield surface states exist. All of
these states can be obtained by different amounts of pure tension. Therefore there is no
Bauschinger effect.

3. All of the yield surfaces are circular in the IT plane so that the von Mises yield surface is
chosen.

The radius of the yield surface in the I1 plane = V3 k- cos(g - arccos(

do';
G +(l—2-v)-8ij -d—EG

Hooke’s Law is de% =

dW =0 -de; = incremental external work per unit volume done on material during straining
dWp =0 @eij - defjj )E Ojj -de®jj = incremental plastic work per unit volume
Wp = [0y -d&”jj = plastic work per unit volume

A common hypothesis for the evaluation of the yield point in tension, G, that started as V3 -k is,

6=\/§'\/(51 —02)2 +(62 —53)2 +(03 —01)2 =\/%'m=F(WP)
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Comparison of stress-strain curves in tension, compression and torsion,

o (ledl & 1 .
Tension: o =F| T 2E| plot ¢ versus In| — |, F is area under the curve up to ¢
i : o
h 2
. o dh p
Compression: =F o
p p ( { P T E]

2-G

Torsion: ‘/g'T=F(}T'd(tan((p))_i]

In 1925 Ludwik and Scheu published experimental results for tension and compression tests on annealed
copper. The main result is shown in the figure below,

X

\

&
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N
%\k

eTensin o lompressin

$ (. -

’ 5 v ) a i X N
Pocontage reduttion i area (Resson) o percentage reducbon
n M}h! (uﬂ;chvt'}

%rcile o compressive streas & bg fmmd

An alternative formulation appearing in the Literature is,

S=H([de"), de" =3 [de’, -de”,

Note that d6=F' -6-dg ' =H'-de" or H=F G
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The Complete Stress-Strain Relations

Let p be the viscosity of a linear, incompressible fluid so that its constitutive formulation is,

' 1

' o', . L
g.=—2>, £ =0, de,=—>2-dt, soincrementin ¢\ isx o',

ij 2 ii ij 2w ij ij
28 2}

Metals have grains that are crystals. For a crystal, G. I. Taylor has shown that 5 shear slip planes are
required for a general distortion. Dislocations move along slip planes and permit sliding at relatively
low stress. Once started, no increase in stress is required to continue sliding (like a fluid). Unlike a

fluid, grain boundaries stop the dislocations until they pile up and break across the boundary. This is

related to work hardening. In view of this it is reasonable to assume the increment in s‘ijp is directly

related to 0”;. The relations proposed by Lévy in 1871 and, independently, by von Mises 1913 express
this concept in the form,

de’j

G'

=dA, dA isnota constant, it is related to work hardening
ij

These equations direct de ",

; 1n the “direction” of 0”5 Now, when the Lévy-Mises equations are

satisfied,
doc de 5, d

=6 .-del =66 =2.52. =5-def = =3. =3. o
dWp =¢'y-de’jj=0'0""dh=%-6"-dA=0c"de =5 so that d A = s Rl Jrrpe

and,
g’ = 2 -\de"y-de’y = \[2- [0 0 -dh =25 -d

For a tension test,

2x¢ 0 0 de® 0 0 5 T
a1 . B > | > O = 5 §+§+§'G=G
[o']=}6 04 andddy =} 07]- 1 . o
= [2 . 1 L). =
0 o) -1ix 0 e 0 -ixd * de” = 3 1+z+z de” =de

Then a plot of o versus ¢ from a tension test is the H function.

To summarize, when dc >0,

dG'ij 3 G'U 'da

dgvij = + —
2:G 2-6-H
1-2-

1 E
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A graphical representation of this stress-strain relation is possible on the IT plane but first write
equations in the principle directions.

de, = 3-cil-d6 N do',
2'c-H 2-G
de, - 3'0'_2'(16 N do',
2'c-H 2-G
de, = 3'6}'(16 N do's
2:6-H" 2:G

The figure below shows a IT plane with stress and strain superposed.

An experimental check on the above equations was reported in 1931 by Taylor and Quinney. The
parameter v was introduced with the definition,

2-defs —de’ —deh
V=—\/§-tan =
(\V) de’1 —defs

The relationship between this parameter and the Lode variable, u, introduced earlier is shown in the
sketch below.

The results of the Taylor and Quinney experiments are shown in the figure below.
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These results serve to remind investigators that the current theories are limited in their accuracy.
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PLASTICITY WITH KINEMATICAL YIELD SURFACES

William Prager, An Introduction to Plasticity, Addison-Wesley Publishing Company, Inc., 1959,
Chapter 1

. ; f \ t"A." ,‘I'. "“\ Ll
elastic VvV V \// WV )

. S — - “~ - -
plastic 1 { :

—1 A A
elastic-plastic [ \-.v."' A=l
12) 1h
l E b I
f . bt “Il -\.;'
. . . ﬁ_ - \1/ J .l
kinematic hardening model - I ] /i
: | .
- | Mighd "
: ?“-"‘—.: |-~r"~u||'| L
™™ '

gy [t
[ S—— a
: ) - |~”n(|) |th lir
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Combined tension and torsion of a thin-walled tube (v=0.5—=3-G =E)

| v ol 1}
| o’ ,l...lx
~ \ u
i ' _aA"
| : 7
| Ci -~ 4
...... [ - 2
‘ /
. j /
y
o/ ! -
4 B
|}
|
e=e" +eP, y=y"+yP
dW =0c-de+t-dy
1 Vectors representing increments of stress and plastic strain are orthogonal so that the stress
increment does no work on the increment of plastic strain.

2 Convexity

Introduce generalized forces, Q; , and generalized displacements, q; , so that the work increment, dW , is
given by,

dW =Q, -dq;, dq; =dq"i +dq";

The yield surface is defined by the vanishing of a function (I)(Qi ) so that,

1 CI)(Qi )= 0 on the yield surface
2 CI)(Qi )< 0 inside the yield surface
3 CI)(Qi )= 0 must enclose point C

Consider Q; — Q, + dQ; while d)(Qi )= 0. This will be an elastic change and,

ﬂ.in=0

0Q;
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. ) od . .
The vector, dQ;,, is tangent to the yield surface so the vector, —, is a vector in the outward normal
i
direction to the yield surface. Therefore, the plastic flow law may be written as,

dgk = %)dw Q=dq- Xl=Q( 1'%}tbe 0,27 ..0 >

1 1

An illustrative example,

RIINe

"

TITTTIT

f_

Von Mises: 612 + 022 -G,°0, — 002 =0

Plastic flow law: de?’i =120, -0,), deP2=r-(2-0,-0,)

Invert these: o ZL'(stp +de’ ) o ZL-(stp +deP )
1 3)\‘ 1 2 ) 2 3 )\‘ 2 1

Substitute these stresses into the yield condition to obtain,
deP1? + deP2” + dePi-deP2 =3-06,° - A2
Then,

5 90, 2-defr + de>

!
V3 \/dsplz +dePr? + deP -dePs

5. = 90 2-dePsy +deh
2= =
V3 \/dsp12 +deP2” + dePy - dePs
2.
dWP = 220 deP)? + des® + deP - dePs

NE)
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INTRODUCTION TO FRACTURE MECHANICS & FAILURE ASSESSMENT DIAGRAMS

1. BACKGROUND

The failure assessment diagram (FAD) results from a method used to combine plastic limit load design with
design based on crack propagation models (fracture mechanics). This presentation is directed to explaining
failure assessment diagrams as they are used in design. The initial part of this presentation considers only
perfectly plastic materials with a yield point,o, . The plastic limit load is the load which will give unrestricted

plastic flow.

If the material is sufficiently brittle, flaws in the material may cause fractures to propagate from the flaws before
the limit load is reached. The usual procedure for designing for materials with flaws is to assume the maximum
allowable flaw size has the most unfavorable shape and orientation. This is generally a crack whose length equals
the flaw size and whose orientation is perpendicular to the maximum tensile stress. The study of the conditions
under which the fracture will propagate is called “fracture mechanics”. The essential elements of fracture
mechanics are given below.

The failure assessment diagram (FAD) may be constructed from the results of the plastic limit analysis and
fracture mechanics. This construction is described below following the review of several fracture mechanics
topics.
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2. THE PHYSICAL BASIS OF FRACTURE MECHANICS

The primary assumption in fracture mechanics is that, under constant environmental conditions (e.g. temperature),
a fixed amount of energy per unit area, I', is required to propagate a fracture. I' is assumed to be a material
property. The rationale for fracture propagation is that an advancing fracture causes energy to be released. When
the energy release rate with respect to fracture area equals I' a fracture will propagate. When the energy release
rate with respect to fracture area is less than I' a fracture will not propagate. Clearly, the energy release rate
cannot exceed I

A.A. Griffith' was the first investigator to propose the energy criterion for fracture. For the classical case of a
crack of length 2 * a imbedded in an infinite, elastic, thin sheet subjected to the far-field tension, o,

perpendicular to the crack, Griffith used the plane stress solution by Inglis” to determine that,

. . 2o
Rate of change of elastic energy with respect to a = Twa 2.1

where E is Young’s modulus. This rate of change is set equal to the energy required to create a new surface per
unit area, 2 ' T, so that,

r-2"%% "9 22

This equation gives the condition, according to Griffith, that must be reached by an increasing o, in order for a
fracture to propagate. I is regarded as a material property and it is called the “elastic energy release rate per crack

where v 1s Poisson’s ratio.

tip”. For the case of plane strain, E must be replaced by P
-v

G.R. Irwin®*’ pointed out that part of the energy for propagating a crack was in the form of plastic deformation in
the vicinity of the crack tip. Irwin made several contributions to improve upon and elucidate the work of Griffith.

The last equation was generalized by replacing the term it - 0. a by the square of the stress intensity factor, KIZ
for the crack. The plane strain condition may now be written as,

r =Q_V2)KT12 23

Further contributions to the development of contemporary fracture mechanics by D.S. Dugdale®, G.I. Barenblatt’,
J.D. Eshelby® and J.R. Rice’ are covered in the material presented below.
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3. BRITTLE FRACTURE
When a fracture extends with very little plastic deformation (evaluated frequently by observing the fracture
surface), the fracture process is described as “brittle” and elasticity theory is used to determine when a fracture
will propagate.

For a two dimensional fracture loaded with a symmetric stress field with respect to the crack tip let,

k=3—-4-v for plane strain

3.1
=3_—D for plane stress
I+v
. E
G = shear modulus of elasticity = ——— 3.2

2~@+D)

where v is Poisson’s ratio and E is Young’s modulus of elasticity. Then the stresses, 6,5, and the displacements,

u,, in the vicinity of the fracture tip in an elastic material may be written as,

K, _ |
= I 3.3
OB = Bt % ()

u, = ua0 + (1+2K£KI- 2r -ﬁal(ﬂ,K) 3.4
‘G1 \/ .

where, see sketch below,

K, = a constant called the stress intensity factor
r = radial distance from the tip of the fracture
Y = angular position in the vicinity of the fracture tip

Euﬁl (19) = a bounded function of &, (e.g.- G, (19=0)=1)
u = an arbitrary displacement

1, (9,x) =bounded function of ©¥ and ¥, (e.g. - ﬁ21(19=0,1<)= 1)
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These results may be used with the condition that the far field displacements are held constant and there is
incipient crack growth. Then,

F-Aa=%-7022(x,0)-B2Q,0+)—uZG(,O')]dX 3.5
0

where Aa is arbitrarily small and with,

022(x,0)=%(a.)x 0<x=Aa 3.6
u, (0 )-u, (6,07 )= K[(a+Aa)-1J(;K- A;—nx 3.7

the result is,

1+« 4 TAa - x
G K, (@)K, (a+ra) .Of‘/ —dx 3.8

The integral is evaluated as,

I'Aa =

Aa

Aa Aa —
f a X-dx= 1/Aa—x-\/;+Aa-sin‘1 ‘/i =£~Aa 3.9
0 X Aa . 2
sothatas Aa — 0,

2
r= L K0 3.10

8 G

or

2

6—02)% for plane strain

r= 3.11

—_— for plane stress

The last two equations give the incipient brittle fracture propagation criteria for plane stress and plane strain
conditions. These results are consistent with the results given in the preceding section.

As a consequence of the above results, there have been many elasticity problems solved to find values of K, (and

other stress intensity factors) for a variety of configurations and loads. One such solution is presented below for
later use. The problem considered is shown in the sketch below,
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It is the plane strain problem for a single crack of length 2a in an infinite two dimensional body subjected to a
pressure distribution p(€) on the fracture face. The far-field stresses vanish. The only restriction on p(£) is that it
be symmetric with respect to &, that is,

p(€) = p(-§) 3.12

The solution to this problem is in the literature. The stress intensity factor, K,, atx =a, y =0 is,

fp(é) \/7@ 3.13

and the fracture opening w(E) for each side of the fracture is,

3.14

wik _1—1) 1 ° n|\/a+§-\/a—x+\/a \/a+x|
il L vy ey - vt

When p(€) is a constant, p_, the above integrals give,

K, = 2 p° \/7 ,Nmea 3.15

W)= (- v)a e ,/1__-26 1) Pe 1;‘_ 316

When p(E) is zero in 0 <& < ¢ and the constant value p, in ¢ <& =< a then,

2 . 4fc
K,=p,Vr-a-[1-=-sin”'[= 3.17

T a
Comparisons of the elastic fracture mechanics propagation conditions with measured results for brittle materials
show that the conditions are valid predictors of fracture propagation so long as there is little plastic flow. Early
work in fracture mechanics was almost exclusively devoted to the kind of problems described above.
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4. FRACTURE OF DUCTILE MATERIALS

The physical basis for fracture propagation in a ductile material is assumed to be the same as for a brittle material.
The calculation of the energy release rate with respect to fracture area in the elastic-plastic case is more involved
than the elastic case. It is therefore common, for practical calculations, to make an approximation which permits
a great simplification in the calculations of the energy release rate. The approximation is that the material is non-
linear elastic rather than plastic so that a strain energy density function, Wﬁsij J, of the form,

(si-=ﬂ 4.1
! I

exists. This approximation has the effect of introducing deformation plasticity theory (as opposed to incremental
plasticity theory) if there is no local unloading. So long as the loading path is not too complex this approximation
is acceptable. In this case the contour integral,

Ju.
J=‘<f(W-nx—csij-nj-l -ds 4.2
! Jx

is independent of the contour enclosing the fracture tip. When x is the direction of fracture propagation, the J
integral is also the energy release rate with respect to the fracture area (under the approximation of the existence

of a strain energy density function). In this integral n; is the component of n in the i"™ direction and # is the
outward unit length vector normal to the contour. The condition that the fracture propagates becomes,

I=T 43

For a specified configuration, stress-strain curve and loads the J integral may be readily evaluated numerically.
Finite element programs such as MARC and ABAQUS have “built in” options for computing J integrals.

Note that in the linear elastic, plane strain case, the calculated values of the stress intensity factor and the J
integral are related by,

T, =Q-v2)%‘2 4.4

where the subscripted I refers to a Mode I crack loading and the bar indicates a J integral value for the /inear
elastic case. It is also convenient to define a material property, Kina, using,

rsﬁ-vz)—K'Eatz 4.5

Therefore, Ky, and I depend on the measured plastic behavior of the material while jl and K; are calculated
using linear elastic material theory.
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5. THE DUGDALE-BARENBLATT MODEL

This is a vastly simplified model of a fracture of length 2-a having plastic flow regions at its ends. The model is
for a fracture in an infinite, thin sheet subjected to a far-field constant tension, o, , perpendicular to the fracture.

The material is assumed to be elastic-perfectly plastic with a yield point ofc,. The plane stress model is

sketched below,

The fracture is modeled as an elastic fracture of length 2(a + s) where the section of length s on each end has a
tensile stress equal to o, acting on the surface. This stress is supposed to represent the stress acting in the

material near the tip of the fracture. With this description and the solutions given earlier, the value of K, atx =
(a+s), y=0 may be evaluated as,

T

a+s

The condition,
K, =0 5.2

is set so that no singularity will occur in the stress field at x = (a + s), y = 0. This condition has the effect of
making the tips of the fracture cusp shaped (not shown this way in the figure above). The condition gives,

E=sec(£-c—°°] -1 5.3
2

The tip of the crack being modeled is at x = a and the total crack tip opening displacement, CTOD, is determined
at this point using the solution given above as,

G
CTOD=§-—y~a-ln sec| =S 5.4
n E 2
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Now the J integral is evaluated using a slender contour from the crack tip to x = (a + s) so that the contribution
from W -n, vanishes compared to the second term in the integrand of the J integral. Direct application of the
above definition of the J integral noting that,

u,(x=a+s0")=u,(x=a+s,07)=0 5.5

gives,

Note that this equation gives the value of the J integral at incipient crack propagation so for this case,
J=T 5.7

and, for incipient crack propagation,

n-E T G,
F-—2=ln sec| — — 5.8
8-a-o, 2 o,
Therefore, when r——, the dimensionless, critical energy release rate, is known [it is a function of
8-a-o
y

. . . . O, ... .
material properties and crack (maximum flaw) size] then —= can be found for incipient crack propagation. For
c
y

O, n-E-T ) . D
example, when — = 0.5, — = 0.3465 . A plot representing this equation is given below.

Oy 8-a-o,
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DIMENSIONLESS CRITICAL ENERGY RELEASE RATE
VERSUS (FAR-FIELD STRESS)/(YIELD STRESS)
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/
“//
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(FAR-FIELD STRESS)/(YIELD STRESS)

The above figure shows that, as the applied stress increases relative to the yield stress, the dimensionless energy
release rate required to prevent fracture growth increases rapidly. In practice, this last equation is usually put into

another form. Define K, and Kl as follows,

Imat
Kimat = the material property I' converted to stress intensity factor units = ﬂ 5.9
K ; = calculated elastic stress intensity factor for measured crack of length,

a=0, Jra 5.10

Now eliminate I" and a from Equation 5.8 using Equations 5.9 and 5.10, respectively, to obtain,

K elastic applied stress intensit o, | 8 T O, 2
Kr=—1 = ( _ PP : Y) = —=-|—-In|sec| — —= 5.11
(material allowable stress 1ntens1ty) o, |n 2 0

Imat

where Kr may be found when material properties I' and E, the crack length a and the far-field stress o, are

o
known. The crack propagation condition on the right-hand side of Equation 5.11 is a function of —= only.

Oy

When this equation is plotted as shown below, the curve is in the form used in a failure assessment diagram.
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FAILURE ASSESSMENT DIAGRAM USING DUGDALE/BARENBLATT RESULTS
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Kr, see Equation 1X.5.11
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Either of the above two curves can be used to determine a reduction of the allowable value of 2 which is
o
y
dependent on the flaw size. For example, an L80 steel is well approximated as a perfectly plastic material since
the ratio of the ultimate strength to the yield point is about 1.1 and the elongation at failure is about 25%. Typical

measured, material properties for L8O are,

r = 600. psi-in
o, = 100,000. psi
= 30.E6 psi

o L
The first of the above two curves shows that for —= to have a value of 0.97 (that is, little influence from fracture

o
y
propagation) the value of the dimensionless critical energy release rate must be, at least, about 3. When
I — issetto 3.0 with the above material properties the value for the maximum flaw size, a, becomes,
8-a-o
y

a=0.2356 inches

The Dugdale - Barenblatt model predicts that if inspection procedures can ensure that all flaws will have
dimensions less than this value then the influence of fracture mechanics is small and the design can be based on
plastic limit analysis.
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6. THE LEVEL 2 FAILURE ASSESSMENT DIAGRAM FOR BURST

The second curve in the preceding section is based on a perfectly plastic material. This material model does not
match many commonly used materials, such as K55, used in tubulars. The materials are typically ductile but the
ratio of the ultimate tensile strength to the yield stress ranges up to about 1.6. While it is possible to use
numerical methods (i.e. finite element methods) to create curves like those in Section 5 for work-hardening
materials, it is not a practical way to proceed for day-to-day design. To overcome this difficulty and also include
the fracture mechanics - plastic limit analysis transition in the design process, the failure assessment diagram has
been introduced to design codes. These diagrams are “generalizations” of the last curve above. The value of the

K,

parameter Kr = is determined by a linear elastic solution and a material property measurement. The

Imat

. . O, . . . . . .
interpretation of —= is more subtle. The design codes are intended to include work-hardening materials. The
o
y
derivation of the Dugdale-Barenblatt results presented in Section 5 is based on an elastic - perfectly plastic
material in plane stress so that the stresses at the ends of the crack were set equal to o,. The strains near the tip of
the crack are expected to be quite large so that it could be argued that the ultimate tensile strength, oyrr, should
replace oy in Equation 5.11. In one code for Level 2 assessment, PD6493 (1991), this reasoning was used to

replace oy by the, so called, flow stress, o, where,

0f=%'((7y+UULT) 6.1
Let,
Sr=2= 6.2
G
so that,
8 T 2
K| ppeags 901y =St [ﬂ—z-ln(sec(E'Sr))l 6.3

A subsequent version PD6493 (1996) uses the above equation for Level 2 assessment of low hardening materials
but uses an empirical equation for hardening materials.

An alternative approach to defining a FAD curve was published by the Electric Power Research Institute'’. In this
approach the Ramberg-Osgood stress-strain relationship was used to simulate real materials and find J integrals.
The Ramberg-Osgood relations are,

n

i=i+a.(£J 6.4

where ¢ is strain, O is stress; 0o, . and n are constants and,
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£y =—— 6.5

The two figures below are taken from Reference 11 and show typical results from the Electric Power Research
Institute study. The strip yield model referred to in the figures is Equation 6.3.

CENTER CRACKED PANEL
a/W = 0.5

Strip Yield n=20 .
Model |

Spu s Baga b i gl o
06 08 1 12 14
S:

Fig. 22—Failure assessment diagrams for a center cracked panel with n — 5 10, and 20 ¢
from the EPRI Handbook. 2 A

X === & RN FRBCIE it T (7RI PR B ==
Kr CENTER CRACKED PANEL
i o n=10
= ‘/Jr
08 — alW =
dp
o 0.75
06 — | } 0.50
C ; 5 | 0.25
el | S
i 2W : <]
g o | Strip Yield !
2 0 } . = Model ]
-
0 1 L g TP |5 S T O | Yy
0 0.2 0.4 0.6 0.8 1 1.2 1.4

S:

Fig. 23—EPRI J-based failure assessment diagrams for a center cracked panel with various a/W ratios

R.A. Ainsworth'? developed some semi-empirical models that yield results similar to those in the above figures.
One of these models has become rather popular and is included in PD6493 (1996) as well as API579. Let,

Lr=— 6.6

Then Ainsworth’s model may be written as,

Kr = ﬁ 0.14- Qrz )) ().3 +0.7- e'0'65'(“6); 6.7
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The failure assessment diagram associated with this equation is shown below.

AINSWORTH FAD CURVE

0.9 ™S

N
N\
0.6 \

y \

Kr

o

(3,
/

0.3 N

. \\‘\
\

0.1

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Lr
The design codes usually interpret Lr or Sr as,
e (Applied Load) or Sre (Applied Load) 6.7
(Limit Load basedon o, ) (Lirnit Load based on o, ) '

Failure assessment diagrams are generally “adjusted” to account for the important parameters in particular design
procedures. The above review gives an elementary introduction to the basis for these diagrams.

The next page is taken from the API579 design code. It shows how the FAD curves are treated in this code.
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Jan, 2000 RECOMMENDED PRACTICE FOR FITNESS-FOR-SERVICE 9-61
Figure 9.20
The Failure Assessment Diagram
12 Y T T T T T T T T T T T T T T T T T T T T T
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 20 22
i
Notes
1. The FAD is defined using the following equation:
2 6
K, =(1-014(L}) )(0.3 +0.7 exp[—o.ss(Lf ) D for Ly S o (9.46)

The extent of the FAD on the L axis is determined as follows:

a. Lf(mu) = 1.00 for materials with yield point plateau (strain hardening exponent > 15),

b. L] ey =125 for carbon-Mn steels,
e. Lf(m) = 1.80 for austenitic stainless steels, and

(o}
d. Lﬂm) =—L for other materials where & + is the flow stress (see Appendix F) and o, isthe

s
yield stress; the flow stress and yield stress are evaluated at the assessment temperature.

If the strain hardening characteristics of the material are not known, then Lﬁmm = 1.0 should be

used in the assessment.

The value of Lf(max) may be increased for redundant components (see Appendix D, paragraph

D.2.5.2.b).

If L’ . =10, then the FAD may be defined using following equation:

r (max)

for LF

'r (max)

=10

K = (1.0 -(ZF )2‘5)0'20 (9.47)

The FAD in the dashed line is used with the assessment procedure in paragraph 9.4.3.3.
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COMMENTS CONCERNING FATIGUE FAILURE BASED ON FRACTURE MECHANICS

This is based on Chapter 10 of T. L. Anderson’s Fracture Mechanics, Third Edition.

Prior to the introduction of fracture mechanics in fatigue life predictions, the S-N curve and the
Goodman diagram were used for this purpose.

The two most successful uses of fracture mechanics have been for brittle material fracture and for
fatigue life prediction.

The application of fracture mechanics results to fatigue life predictions in the case of repeated, identical,
cyclic loadings is to predict the crack length, a, growth per cycle. The reciprocal of this prediction is
integrated from an initial crack length of ap to a final crack length of ar to find the cycles, N, to fatigue
failure. The experimental results required to establish the growth per cycle prediction has the form

suggested below.

Fracture

{11

Log 57‘\1]

Threshold

Ath Log AK Kc

FIGURE 10.2 Typical fatigue crack growth behavior in metals.

where the load history (based on stress intensity factors) is sketched below.
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Elastic Singularity

K x Zone _ - Sd

max

Time

FIGURE 10.1 Constant amplitude fatigue crack growth under small-scale yielding conditions.

The physical behavior for these results is thought to be mathematically modeled using a growth rate
equation of the following form,

j—; = crack length increase per cycle = f, (AK,R), AK =K, -K . , P

{(1+R)

and N = number of cycles = f
a
)

When there as been previous cyclic loading, this past history must be taken into account.

sothat K . =3-K

mean max

da

For the central, straight-line section of the first figure, Paris and Erdogan (1960) proposed the following
equation,

%%=C-@Km]

This equation is usually referred to as the Paris Law. Paris and Erdogan, based on available data,
suggested that m =4. Subsequent testing indicates that m lies between 2 and 4. Note that the last
equation is independent of the ratio R and, therefore, the equation is not consistent with the Goodman
diagram.

Other forms for fatigue life prediction may be found in Anderson’s book. Several considerations apply
to fatigue life predictions. Some of these are,

Crack closure can effectively decrease AK.

Crack wedging may be present because of corrosion

There are several proposed explanations for the existence of a threshold stress
The Miner-Palmgren criterion is used for this sort of calculation

AW~
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For low-cycle fatigue the classic L. F. Coffin and S. S. Manson formulation should be
considered,

(plastic strain amplitude) = g0~ (N)

where €0 is the strain to cause failure in one cycle, ¢ is a constant for the material (-0.5 > ¢ >
-0.7) and N is the number of cycles to failure.
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THE RELATION OF CLASSICAL MECHANICAL SYSTEM STABILITY THEORY TO
DRUCKER’S POSTULATE

The purpose of this presentation is to show that, with a liberal interpretation, the usual
mechanical system stability criteria are consistent with Drucker’s Postulate. The film is rather
comprehensive so only the slides are contained in this section. This material was presented first as a
seminar in 1970 by Paul Paslay at Brown University to the Mechanics Group.
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EQUILIBRIUM METHOD
mu.Hn.QIHﬂ.QHO - P =K/L

ENERGY METHOD
1 1
PE = - . K. -2 . P. .
M Qm N .—... o
SPE=(K-P.L).-a=0 > a=0

¥PE=K-P.L >0 - P < K/L

=<2>§O§EOU
P.L.a-K-aa=10.d
0.&a+(-P.L).aa=0

Q”\V;ou...e; - SN”AK'.T.H‘V\HO
stable if P < K/L
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EQUILIBRIUM METHOD
K-a=0 - o« =0 |, nobuckling

ENERGY METHOD

_um"w.ﬂ.au

2
OPE =K - a .6 — a =0

FPE = 1 . K. (5ap - stable

2
\m
DYNAMIC METHOD
-K.a =10 . &
0. ¢a +K.aa=0

\ Qu>.m=;|vv~u..HAZO
P stable
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EQUILIBRIUM METHOD
P'L-a-K-a+K(p-a)-=0
P-L-P-K(B-a)-0

ﬁ.b-u.w K

=0 -PLIKY-3-P-L/IK)+1=0
z HU.r.w_ P -L/K) (P -L{K)

P L{K =3 -5/2, Bfa = 2/(y5 - 1) = 1.618

ENERGY METHOD

vmnw.w.?:a-&Nv-w.r.m.e:w.&

6PE=(2 K-« -K:-B-P- L -a)-dcx
+(~-K'a+K*B -P-L-B)"8p

T T _ . a
5DE 7_ . ﬁﬂ P-L/2) Ki2 _ _ n_

5B K/2 (K-P-Ly2| |5p
K-P-Lj2>0 , P:L/IK<2
K-P-L{2)-(K-P-L)/2 -K*4>0 ,
P L{Ky¥-3-(P-L/K) +1>0
P'L/K < (3-{9/2
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P K+w-M.L? P.L-K+@*-M.L? B
f let £ =P . -L/K 7 =w M .L¥*K
J 2.3 (E - F-3-F+1) =0
K- (B-a) PH n rcal & positive - § < ? -,\wrm
_.u.m Y Cx.l..u-\&
/o
_uIl..CW.Q
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EQUILIBRIUM MEIHOD

W Mw - Q& . OQ .uch =6 v no alternative solution

4

ENERGY METHOD
dW|, =P - L . [sin(@ - ) - der + (0.) - dB]

%_W.QEAQ -£)) #0 .. P not representableby PE

DYNAMIC METHOD [ADD M, PH, PHI]

w:uz.r.a+9 me_uz.r.@.m&v
PHI -PH =M . L . &
K-B-a)~-K-a-PH-L-P-L.(B-0)=M.L2.4&
\v “K-(B-a)=M.L%. (& +§)
Eliminate PH from last two and set
1 a=A-e"™", Bg=B.e™
\ _Hv.rlm._ﬂ,fm.eN.g.rN 'm.r+m+s~.z.r~u_ _H»JI ou_
0

K- Qw;QvD C N.Cwlo&

K+ -M-.L? -K+w* - M.L? B
\ E=P- LK , 9= - M. LYK , »+ 2 .E-6)-9+1=0
P For real positive roots for 9 | <2
N‘QC P <2.K/L

y:
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DRUCKER'S STABILITY CRITERIA,
STARILITY IN THE LARGE: g-d&® > O

g = stress

SCABILITY IN TUE SMALL: do-de® 2 O

do
d="

tangent plane to
P ,.v yield surface at
Point P

0

yield surface

s

yield surface

# is on the yield surface, Point P STABILITY IN THE SMALL REQUIRES

do causes plastic slraining ds® TO BE PERPENDICULAR TO THE

de” = inecrement of plastic TANGENT PLANE A'l' POINT P

strain resulting from do

SUPERPOSED STRESS AND PLASTIC STRAIN SPACES
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APPENDIX 1, ADDITIONAL FRACTURE MECHANICS CONSIDERATIONS

The following five sub-sections are attached to fill in some of the details in the body of the
earlier report. The details are well established results that are found in fracture mechanics textbooks.
The sole intention for including this appendix is to provide ready reference to points that may not be
familiar to every reader.

1. THE RELATION OF ELASTIC ENERGY RELEASE RATE TO STRAIN ENERGY

Consider a two-dimensional linear elastic body with a single crack of length A and a pair of self-
equilibrating forces, P, as shown in the figure below. Lo is the distance between the load points when
the loads are zero so that A is the elastic displacement on the load line. Assume the compliance, C(A),
between the loads is known so that the small displacement relation between P and A is given by,

A=C(.)-P Al.l

The strain energy associated with the loads on the body, U, is §-P-A and P may be eliminated to

obtain,
U———L—»N Al2
" 2-C(n) '
and,
2
U -A aC(r) AL3

ar 2-c(hy 9A

The Principle of Minimum Potential Energy will be employed to relate the strain energy to the
energy release rate for an increasing crack length. The principle implies that the first variation of the
potential energy, PE, vanish when the configuration (A) undergoes a variation under constant load
conditions.  The wvariation, 8A, of the configuration is described, for present purposes, as
A — A+6 A and L — A+3A with A and OA being mathematically independent. The contribution to the

potential energy change owing to dA is —P " dA. The contribution to the potential energy change owing
to OA is based on a fundamental postulate of fracture mechanics. The change in potential energy
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associated with OA is set equal to G * d(crack area). The change in crack area is defined as t " A where t
is the thickness of the body. The quantity G, the energy release rate, is the energy expended to increase
the surface area of the material per unit increased area. This energy release rate is postulated to be a
material property so that it is the same for any problem so long as the material is not changed. This
means that the potential energy may be written as,

PE=U-P-A-G-t-A =2;-A2-P-A-G-t-x Al4

c@)
and the first variation of the potential energy, which must vanish, becomes,

2
OPE = i-P OA + -A -acm-c-t OA =0 Al5
c(r) 2-C(ry oA

Since 0A and dA are independent, their multipliers must separately vanish so that,

P= A (same as Equation A1.1)
c@)

2
=N ac) ALG
2-t-C(AY 94
. . .. ach) .
Combining Equations A1.3 and A1.6 to eliminate T yields,
G= 1.9y Al.7
t o

Consequently, if a solution for the strain energy of a body containing a crack is known in terms of A,
then Equation A1.7 may be used to find G which is interpreted to be the energy release rate required to
propagate the fracture (increase A) at the imposed value of A. In general, G is determined from the
value of A, determined experimentally, that initiates an increase of the measured crack length. The
sketch below illustrates the influence of a small increase of crack length at a constant value of A. The
lines labeled A and A+dA are load-displacement curves for crack lengths of A and A+dA, respectively.
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P r'
dU = area between A and A+dA lines
dU

G=4Y

t-dA
A
A+dA
:A

It is important to note that the results in this section of the appendix apply only to linear elastic
bodies. The results are therefore applicable to many brittle materials but not to elastic-plastic materials.

The main use of Equation Al.7 is to determine the linear elastic stress intensity factor (=« E -G, see
section 2 of this appendix) for use in a failure assessment diagram, FAD.

2. THE RELATION OF ELASTIC STRESS INTENSITY FACTOR TO ELASTIC
ENERGY RELEASE RATE

When a homogenous, isotropic, linear elastic body containing a crack is loaded, the resulting
stresses and displacements may be found using the theory of elasticity. If the loading causes the crack to
open the stresses and strains at the crack tip are singular (go to infinity). The sketch below of a crack in
plane stress shows the coordinates x, y and r, 0, the displacements u and v and the stresses ox, 0y and .

X,y origin at crack tip
x-direction parallel to crack

It is well established that the singularity causes stresses and displacements close to the crack tip
(r sufficiently small) that may be written as,



97
o, =0l +0ll,
o,=0l +0ll,
t=tl+7Il
u=ul +ull
v=vl+ VIl
E

G=2-(1+v)

where,

ol =I<'Lsgﬂ)-[l-sin(%'6)-sin(%-0)]

* N2t

ol =K'%S(éﬁ)-[l+sin(%-0)-sin(%-0)]

lsm( 6) os( 6) cos( 0)

I—— 1/ cos( 0)-[1-2l+sin2(%-6)]
l+v
_K /L (o) 2V 2(L.
vl= G 7. s1n(2 0) [2 1+V+cos (2 0)]

and,

oll, =-M-[2+cos(%-e)-cos(%-ﬁ)]

N2t

oll, _ Ky sing0) -sin(%-@). cos(L-0) cos(2-0)

N2t

et K0 ) st

LS B A P 2(L.
ull = G V3 sm(2 0) [2 1+v+cos (2 0]
VII=%~1/i-COS( 0)[ +—V+s1n2(1 9)}

A2.1-6

A2.7-11

A2.12-16

The stress intensity factors K; and Ky correspond to different modes of deformation. When the three
dimensional case (not considered here) is studied one more deformation mode is found. The three
modes are shown in the sketch below. For the plane stress case being considered here the Mode III
displacements cannot occur. All of the analyses in the body of this report are for Mode I singularities.
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Y
Mode I % Mode Mode Il

The case of Mode I displacements is now considered in order to relate K; to G. That is, a plane
stress case where Ky = 0 is considered. The figure below shows the case of a crack after propagation
(upper) and before propagation (below). The amount of propagation is a, taken to be small enough for
the stresses associated with the stress singularity to dominate. The change in strain energy per unit area,

, corresponding to the propagation may be calculated directly as,

Aarea
X
e
ax
p .
=
y b agp e O, e
AU =£.f TR PRNRE' PRS0 BT S P A2.17
Aarea a 0=0 |0=n 6-0 |0-x

When the stresses and displacements given in Equations A2.8-11 are substituted into Equation A2.17 the
result is,

K2 X=a _ K2 . _ X=a K2
AU = ! -fwfa X dx =—L_-|arcsin 2 x-a =—0 A2.18
Aarea J'L"O{'G'(1+V) JoVox m-E a .o E

and, by definition, the left hand side of Equation A2.18 is the energy release rate, G, so that,

2
G= LI A2.19
E
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Equation A2.19 is the desired relation between the elastic stress intensity factor, Kj, and the energy
release rate, G. Using the same approach the following result can be established,

G= K12 + K112 + (1""’)'K1112
E E E

A2.20

Note there are no cross products of the K’s in Equation A2.20. In addition, when two loads, P; and P»,
contribute to K;, Ky; or Ky the stress intensity factors may be written, with obvious notation, as,

Ki(P1, Ps) = Ky(P1, 0) + Ky(0, P) A221
Ku(Py, P2) = Ku(Py, 0) + Ki(0, P2) A2.22
Kimi(P1, P2) = Kmi(P1, 0) + Kin(0, P2) A2.23

The last three equations are valid since the stresses are linear in the K’s, see Equations A2.7-16.
3. THE J INTEGRAL AND ITS PATH INDEPENDENCE

The preceding results in this appendix have been limited to the case of linear elastic materials.
The body of this report uses an approximate method to include plasticity influences. In the course of
these analyses the J integral is determined. This integral measures the energy release rate for an
approximation to elastic-plastic material behavior. The material limitations required to relate the J
integral to the energy release rate are that the material be isotropic and homogeneous, the strains be
small (compared to one) and the stress-strain behavior be derivable from an elastic strain energy
function, W(g;), so that,

W = W(e;;) = elastic strain energy function
Eij =1, j component of the strain tensor
Ju. Ju.
=1 =4 A3.1
ox;  0x,
uj = i" displacement component, assumed to be twice differentiable with respect to x;
X = i™ Cartesian coordinate
Oj =1, ] component of the symmetric stress tensor
A
=—— A3.2
e i

Although the material is, strictly speaking, elastic, the W function may be chosen so that the loading
stress-strain curve resembles a typical measured stress-strain curve for an elastic-plastic material. So
long as unloading does not occur and the ratios of stress components remain constant during loading, the
formulation is a good representation for the elastic-plastic case.

The J integral value, J, is defined for current purposes (e.g. — no body forces) as follows for plane
stress,
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I= ((wW-dy-ST 2% .4 A33
—j; Y—E i a—x S .

where the positive sense of integration is counterclockwise along the contour I' in the body and,

r = contour in the material commencing on one face of the crack, enclosing the crack tip and
ending on the other face of the crack
X = coordinate parallel to the straight crack direction
T; =i component of surface traction (surface traction vector = force per unit surface area)
_ 2 oy, A34
J
n; =ih component of unit outward normal to I" contour
ds = differential arc length along I"

With these definitions the coordinate changes along the I' contour are,
dx=-ny"ds A3.5
dy =ny "ds A3.6

In the next section of this appendix the J integral will be shown to be equal to the energy release rate and
this provides a physical connection of this integral to fracture mechanics. In this section an important
property of the integral is derived. The property is that for a closed contour the integral is zero when
there are no singularities inside or on the contour. This property can be used to show that the J integral
is independent of T, that is, it is path independent for all contours satisfying the above definition of I'.

The integrand in the J integral is now applied to a closed contour I'y that contains no singularities

inside or on its boundaries. This new integral is denoted by Jo. The derivation starts by eliminating Ti;
using Equations A3.3 and A3.4 with the result,

J, =fro(w-dy-22qj-%-nj-ds) A3.7

In this equation dy may be replaced by ny * ds and the order of summation changed to obtain,

JO=ﬁU(W-nx-ds-22(Gij-%)-nj-ds) A3.8

The contour integrals in the above equation can be converted to area integrals by using the divergence
theorem. This theorem is applicable only if the integrand contains no singularities (such as those
appearing at the tip of the crack). Since I'y satisfies this condition, the theorem is applicable to Equation
A3.8. The divergence theorem is,

j;oqo-ni-ds=f 99 . 4a A3.9

Ao 0X;
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where Ay is the area enclosed by I'y. The result of applying this theorem to Equation A3.8 is,

EEaX ( . )] dx -dy A3.10

Recall that W = W(g;j) so that the first term of the integrand may be expanded and Equation A3.2 may
be used as follows,

syt sea i)

Take the second term in the square brackets in the above equation, interchange the i and j indices and
recall that oj; = oj; to obtain,

0 (1) gy, (0
33l 33 (3

The force equilibrium equations (without body forces) are,

00,
E ) _0 A3.13
axj

and they may be used with Equation A3.12 to determine that,
E E ( i ) A3.14
0X . X

When Equations A3.10 and A3.14 are combined to eliminate aa_W the result is,
X

Jo=0 A3.15

The vanishing of Jy can be used to establish the independence of the J integral. Consider the
choice for the I'y contour and sense of integration shown below. The closed contour is separated into
four parts I'j, I';, I'; and I'y. Parts I'; and I'; are each legitimate contours for the J integral. Let the
integral in Equation A3.7 be separated into parts J;, J,, J3 and J4 corresponding to I'j, I'5, I's and T'4.
Since Jo vanishes,

Ji+h+I+J,=0 A3.16
and, referring to the integrand of Equation A3.3, since dy and T; vanish on the crack surface,

L=J4=0 A3.17
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so that Equation A3.16 becomes,
I =-1 A3.18

As both I'; and I'; are legitimate I' contours and the sense around Gs is clockwise, J; and -J; are
legitimate values of the J integral and Equation A3.18 shows that the J integral is path independent.

crack faces

Note that crack faces
in the undef ormed
configuration are
parallel to x so that
dy =0.

It is interesting to note that, since J, and J4 vanish and J; = -J, the contribution to the J integral
comes entirely from the strain field at the crack tip

4. EQUIVALENCE OF THE J INTEGRAL AND THE ENERGY RELEASE RATE

In order to show the desired equivalence, a body containing a single crack of length A is
subjected to a restricted set of boundary conditions is investigated. Each region of the boundary has one
of the two following boundary conditions.

1. The surface traction, Tj, is specified and nonsingular. T; is defined in Equation A3.4 .
2. The displacement is zero.

For these conditions the potential energy, PE, for this body under the imposed boundary conditions and
material restrictions required for J integral validity is,

PEzﬂBW-dx-dy-ﬁBETi-ui-ds-G-t-/l A4.1

where the contour I's must include all of the material in the body. It is taken as the outer boundary of
the body not including the crack. This contour is a legitimate J integral contour. Consequently, the area
Ag is the area occupied by the body as required for the potential energy. In Equation A4.1,

W = W(e;;) = strain energy function
Eij = component of the strain tensor

ou. Ju.
=%~(—'+ JJ A4.2
axj 0x.

1
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uj = i" displacement component, assumed to be twice differentiable with respect to x;
X = i™ Cartesian coordinate
Oj = component of the symmetric stress tensor
= oW A4.3
Jde i
ds = differential arc length along T,
Recall, from Equations A1.3, A1.4 and A1.5 that,
d PE
TR (energy release rate) A4.4

Use the definition of the potential energy, Equation A4.1, in the left hand side of the above equation to
obtain,

OPE 0
a—)L=6_)L[f -dx - dy - f ET u, dsl A4.5

The derivative on the right hand side in the above equation requires some explanation as the strain
energy, W, is computed using a coordinate system located at the tip of the crack with the x direction

. d
parallel to the crack. As the crack progresses, the coordinate system must be moved so that a_; =-1

and therefore,

o ,9,9x9 0 0 A4.6

A A IA X IA  ox

That is, there are two contributions to the “partial” derivative. The first term accounts for the change in
the stress distribution when the crack grows. The second term accounts for the shift in the position of
the coordinate system. Consequently,

%LBW-dx-dy =LB%-dx-dy —j;BW-dy A4.7

;LfrBET u, -ds = fET -ds - ﬁET : A4.8

so that Equation A4.7 becomes,

I PE IW Ju, du,

According to the Principle of Virtual Work, the difference of the first and third integrals on the right-
hand side in the above equation vanish with the result that,
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dPE du,
a—)L=—frBW-dy+ﬁ82Ti-a—X-ds A4.10

Combining Equations A3.3, A4.4 and A4.10 gives,
= - % = (energy release rate) A4.11

5. RELATION BETWEEN CTOD AND THE J INTEGRAL FOR THE DUGDALE-
BARENBLATT APPROXIMATION

In each of the solutions presented in the body of this report the crack tip opening displacement,
CTOD, is derived and then multiplied by the yield stress, oy, to determine the value of the J integral.
This section presents the justification for this procedure. In each case the length of the elastic-plastic
crack, a, is found. The associated elastic crack has a length L where A = L-a > 0 and the normal stress
across the elastic crack between a and L is o,. The length A is the approximation to the length of the
plastic region of the elastic-plastic crack. The J integral from Equation A3.3 is,

JZﬂ(W-dy-zTi-%-ds) AS.1

where I' is a contour in the material from one face of the fracture to the other face that encloses the crack
tip. For the problems considered here the most convenient contour is a rectangular region enclosing the
elastic crack tip. The y-direction height of the rectangle is chosen so small that the first term of the
integrand is negligible compared to the second term. The rectangle extends from the elastic-plastic
crack tip to the elastic crack tip (crack tip inside rectangle). Note that uy is zero on the crack axis outside
the elastic crack so that,

x-a Ju
J= f Oy(a_xy

x=L

auy

y>0side ~
of crack 0x

y <0side ) ) dX = O-y ) (uy(aiy?%ide - uy (aiyd)side ) = Gy ) CTOD A52
of crack of crack of crack

It is noteworthy that Equation AS5.2 has been shown to apply only to analyses that use the Dugdale-
Barenblatt approximation. Equation AS5.2 is not a general result.
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APPENDIX 2, A DUGDALE-BARENBLATT TYPE APPROXIMATION FOR THE DOUBLE
CANTILEVER BEAM SPECIMEN

INTRODUCTION

DOUBLE CANTILEVER BEAM SPECIMEN

e a
P

P =SPREADING LOADS
t=SPECIMEN THICKNESS
2-h = SPECIMEN HEIGHT
a=CRACK LENGTH

The sketch above shows the familiar double cantilever beam quasi-static test specimen with
monotonically increasing spreading loads applied while the crack propagates. For this analysis the
stress state is assumed to be plane stress. The specimen is used to measure static fracture properties of
the specimen material. For a brittle material the measured relation between the spreading load, P, and
the crack length, a, may be used to determine the elastic energy release rate I'gas when the crack
propagates. When elementary beam theory is used for the cantilevers, the elastic energy release rate is
predicted to be,

r o _l2-pa
ELAS tz'h3‘E

where E is Young’s modulus.

In this document an approximation is obtained to take into account the influence of plasticity on
the double cantilever beam test. The approximation follows the method used in the Dugdale-Barenblatt
plane stress solution for a crack in an infinite medium. That is, a stress singularity is “avoided” by
replacing the stresses normal to the crack and in the vicinity of the crack tip with the yield point stress.
The size of the region is chosen so that there is no singularity in the stress field.
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ANALYSIS WITHOUT SHEAR DEFLECTION OR BASE ROTATION

The sketch below gives the approximation used here. The centerline of the specimen is y = 0.
When x < 0 the centerline has no deflection in the y-direction. The region 0 < x < A has the yield stress
applied to the centerline and the lateral deflection of the bottom surface is not restricted. The region A <
x < Ata is modeled as an elementary cantilever beam with a lateral end load, P. There are no side
grooves in the specimen.

TOP HALF OF SPECIMEN

P
yA a 4{

|h
LA !
Gy

x = DISTANCE FROM LHS OF PLASTIC REGION
y = DEFLECTION OF SPECIMEN CENTER LINE
A =LENGTH OF PLASTIC REGION

o, = YIELD STRESS

In the Dugdale-Barenblatt solution the stress intensity factors at the elastic crack tip (x = 0) of a
single crack in a two-dimensional infinite medium are determined and the length, A, of the plastic region
is chosen so that at the tip the net stress intensity factor is zero. In this analysis a similar procedure is
followed. Consider an elastic crack of length a+A. In the vicinity of the ends of the elastic crack apply a
normal stress to the crack surface. The magnitude of the normal stress is set equal to the yield point, ;.
This stress represents the load on the elastic region by the plastic region. Consequently, the elastic-
plastic crack length (the actual crack length) is equal to a. At the elastic crack tip (x = 0) for the top half
of the specimen the stress state, from elementary beam theory, is a linearly varying bending stress in the
o, At

y

P-
y-direction and a shear stress with an average value of . The lower half of the specimen has

bending stresses and an average shear stress equal to the negative of the average shear stress on the top
half of the specimen. If the spreading force is positive at the elastic crack tip, it will develop a stress
singularity at the tip. This singularity is proportional to /I';, s for a crack of length of A+a. This

singularity is removed by the normal stress equal to the yield point acting in the vicinity (0 < x < A) of
the tip of the elastic crack. Recall that the length of the elastic-plastic crack is a.

In order to find A, the magnitude of the J integrals (J integral = calculated energy release rate), I'p
and I', associated with the P and oy loadings are found. Let EI (= - E-t- h?) be the bending stiffness
of each beam so that for the P loading (see above sketch),
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EI-yP"=()L+a-X)-P

EI-yP'=[(/1+a)-x-%-x2]P

EI-yP=|__%-()L+a)-x2-%-x3]P ,0<x<A+a 2
P>-(A+a) 4-P*-(A+a
U=3-P-2-y,| sa =7 (EI )3= E't('h3 )3

1 U 12:P>-(A+a)
L =— = 2 1.3
t oA E-t>-h

For the oy loading,

El'y,'"=1-0,- ()L 2-)L-x+x2)
El-y,'= %Gt(}» X)Lx+—x)
El'y, =50, t(zit X——/lx+—x) ,0<x <A 3
x=A 2 2 5 2 5
ot A ot A
U=%'0y't'x[02'ya'd"=%' y - =% yE.h3
1 oU 30, A"
I ="
t 9A E-h’

The condition that /I, =/, leads to the equation,

2

o, -t
TR AN DA g 4
2-P a a

whose positive root is given by,

o -t-a
£= L 1+1/1+2- ’ 5
a o,ta P

A result from fracture mechanics that is employed now is that the J integral for this elastic-plastic
problem, I'gp, equals the product of oy, and the crack tip opening displacement (CTOD). The location of
the crack tip for the elastic-plastic problem is at x = A so that,

G2 ) e )

E-t-h’

and,

12-0.%-a*

EP
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so that,

1 1, (o,ta\ [ P A A A
PR = ) A=+ = -3|— -7 — 8
Kro Tjas P o,ta (\a a a a

where T, 4 is calculated, using Equation 1, for a crack length of a. The last equation defines Kr* which

is the approximation for the correction of the elastic energy release rate owing to plasticity influences. If
this correction is valid then the fracture propagation energy release rate condition, I'yaT, 1S that I'gp =
I'vat.  This reasoning was used with the Dugdale-Barenblatt solution for the original Failure
Assessment Diagram (FAD). This diagram plots Kr as ordinate represented as,

Kr — fELAS 9
V I_‘MAT

against a measure of the load-to-plastic limit load. Examination of Equations 5 and 8 shows that the

abscissa should be L The figure below shows the FAD curve for this double cantilever beam

Gy'a-t

P . . .
problem up to ———— = 0.1 which exceeds the normal values in practice.

Gy'a-t

FIG. 1, FAD CURVE FOR THE DCB TEST
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The three following curves give results based on a typical specimen size and material.

FIG. 2, J INTEGRAL VERSUS P/(®y*t*a)
BEAM BENDING, NO SHEAR DEFLECTION, NO BASE ROTATION, NO GROOVES
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FIG. 3, STRESS INTENSITY FACTOR VERSUS P/(Cy*t*a)
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FIG. 4, » VERSUS P/(Cy*t*a)
BEAM BENDING, NO SHEAR DEFLECTION, NO BASE ROTATION, NO GROOVES
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It is interesting to note that, while the beam bending moment at the tip of the elastic-plastic crack
equals P " a, the beam bending moment at the tip of the elastic crack is zero.
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APPENDIX 3, REVIEW OF THE MULTI-YIELD SURFACE, KINEMATIC HARDENING
PLASTICITY THEORY

1. GENERAL THEORY

1A. The m-Plane and a Single Yield Surface

The theoretical basis of the plasticity theory used for the PLASTIC program is described in the
paper “A Small-Strain Plasticity Theory for Planar Slip Materials” which is appended to this review. In
the appended paper a continuum of yield surfaces is used. This continuum, for example, makes it
possible to match the results of a tension test exactly. For this study the continuum of yield surfaces is
replaced by a discrete number, ISURF, of yield surfaces. This modification produces a tension test
stress-strain curve which is piece-wise linear with ISURF+1 linear sections. The description below
assumes the reader is somewhat familiar with kinematic hardening.

Consider first an elastic-plastic material with a single yield surface. The yield surface is defined
in a strain space with components ¢; (1 = X, y, z and ] = X, y, z). In the annealed, initial state the yield
surface is a circular cylinder whose axis passes through the origin in principal strain space. The axis of
this cylinder is perpendicular to the m-plane (any plane making equal angles with each of the three
principal strain axes). For a specified principal strain state, e;; the corresponding projection point on the

n-plane is not influenced by the addition of a strain increment that is perpendicular to the m-plane.
When these perpendicular increments are added to e; the result, etjj , can be expressed as,

etij =e; + C " Oy
where 0;; is the Kronecker delta and is defined by,

oj=1 i=]j
=0  otherwise

Consequently, the projection on the m-plane of any strain state can be shifted to one, common m-plane.
The m-plane containing the origin of the principal strain space is selected here so that the, so called,
deviatoric strain state, €, , which plots onto the s-plane containing the origin, is deduced from e;; as,

ij
e

~ kk

eij—e,.j—( 3) 51]‘

where repeated i, j or k indices in a term imply summation on X, y, z and ¢, obviously has the property,
e, =0

Another way of understanding the projections in the principal strain, e;, €, €3, space is to use unit vectors
i, j, k in the ey, e, e; directions, respectively, so that the principal strain vector, € , becomes,

€ =1'¢e, +J'e, +k-e;
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This vector can be resolved into components perpendicular to and parallel to the m-plane. The
component perpendicular to the m-plane is parallel to the unit vector u where,

ﬁ=%-(§+j+1€)

The component of € in the u direction is € ® u so that,

s L

eeu = \/g-(e1 +e, +e3)

Then the component of ¢ in the m-plane is € - (€ ® u)-u which will be designated ¢ so that,
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The vector € lies in the m-plane containing the origin. The length of this vector is v€*¢ or,
23 _~2 . ~2 . ~2 2. 2 2 a0 ¥
ve*e=¢€ +¢€ +¢ =¢€ + € + ¢ -3 +€,+¢;5)

This result may be written in general x, y, z coordinates (remembering that repeated i, j, or k indices in a
single term implies summation over that index) as,

Ges_ s | Tog 2
€0C =€ € =4/€Cj =3 Cy

A single yield surface in the annealed state is a right, circular cylinder of radius \E -1 so that,

2 ~ o~
- =7¢;¢

\S) (9%}

This seemingly awkward choice for the radius has a historical basis which will not be discussed here.
The intersection of this cylinder with the m-plane is obviously a circle in the st-plane.

When plastic flow occurs for this single yield surface case, the circle translates in the m-plane
while the yield cylinder axis remains perpendicular to the m-plane. In this process the cylinder axis is
displaced from the origin. The strain state principal strains define a strain point in principal strain space.
This strain point moves in the strain space as the loads on the material change. So long as the path
followed by the strain point lies within the current yield surface further plastic flow will not occur and
the material instantaneous response will be elastic.

When the strain point lies on the current yield surface then it is possible for additional plastic
flow to occur. Consider a small change of position of the strain point when it lies on the yield surface.
If this small change does not take the strain point outside the current yield surface then no additional
plastic flow occurs. If the small change takes the strain point outside the current yield surface then the
yield surface shifts so that the new strain point lies on the yield surface in its new position. This small
change in strain point position causes plastic flow and the current yield circle in the m-plane containing

the origin shifts parallel to a line joining the center of the yield circle and the strain point ¢ (which also
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lies in the m-plane containing the origin) on the boundary of the yield circle. The change of position of
the center of this yield circle equals the change in plastic strain corresponding to the small change in the
position of the strain point. It is worthwhile to note that the flow law described above has the important
property that the plastic strain point always lies in the m-plane containing the origin. Therefore the sum
of the plastic normal strains vanishes. For this small strain theory the vanishing of this sum is equivalent
to the condition that the plastic volume change vanishes. This result also implies that the deviatoric
plastic strain equals the plastic strain. The location of the center of the yield circle in the m-plane
containing the origin is controlled by the coordinates p;, p. and p; of the principal plastic strain vector,
p . The corresponding plastic strain coordinates in the general X, y, z coordinate system are pjj. As

noted above,
Pk =0

so that,

5 =pP; - (T”I%pkk)aJ = Py

3 Lt}

In the following presentation p; will be used.

The externally applied stresses, s, associated with the material element under consideration are
separated into their mean and deviatoric parts as,

mean stress = 5,
. . _ 1, .
deviatoric stress component = s, - (3 skk) 5;

The mean stress is related to the volume change of the material. Since there is no plastic volume change
the elastic stress-strain equation for volume change is always valid so that,

E
S T 120 Ok

where
E = Young’s modulus of elasticity
v = Poisson’s ratio

The deviatoric stress, S

1j 2

is related to the deviatoric elastic strain, €; — g; , through the usual elastic

stress-strain law as,
S; :2'G'(eij - pij)

where G, the shear modulus, is given by,
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E

C= 0+

The condition for yielding in this plasticity theory is influenced by the existence of a back stress. This
back stress is hypothesized on the basis of dislocation pile-ups at the grain boundaries of the
polycrystalline metals under consideration. For the case where the dislocations cannot cross the grain
boundaries it is reasonable to assume the back stress is proportional to the plastic strain. Therefore,
define the back stress to be A’ p; and then the condition for yielding should be related to the difference
between the deviatoric stress 2-G-(’éij - ﬁU) and the back stress A 0; . For the yield condition the

strain quantity of interest is €; — k - 0; where,

A

=1
K +2G

Thus the yield condition after plastic flow has occurred is,
(Eij ‘K'ﬁu)(gu‘ ‘K'ﬁu‘)= >

which defines the yield condition on the m-plane containing the origin as a circle with radius \/g ‘T and
center coordinates K'p,, K'p.,, Kp.. When the above yield condition is satisfied and the next small
increment of strain, A€. , is such that,

ij »
(- x5, ) Ag, >0

then plastic flow occurs. The corresponding change in the plastic strain, Ag; , is determined by the
requirement that the new strain points defined by ¢€; + A€; and p; + Ap; satisfy the yield condition.

This requirement, to first order changes in the strains, gives,

K-Ap; = 3.21,2 '(Eij _K'ﬁij)(ékm _K'ﬁkm)'AEkm

which is a shift of the yield circle center in the m-plane containing the origin in the -k 5 direction.
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1B. Extension from a Single Yield Surface to Multiple Yield Surfaces

The appended paper uses a continuum of yield surfaces to represent the material model. In the
formulation given here a discrete number, ISURF, of yield surfaces, replaces the continuum. A physical
basis for thinking of these yield surfaces is that each surface represents a fraction of the crystals in the
polycrystalline material. This fraction would include all crystals with orientations whose yield stresses
approximate the yield stress value for that yield surface. The fundamental notions are that each crystal
has the same total strain, e;; , and that the stresses vary from crystal to crystal according to the orientation
of the crystal.

The stress state is given as a summation over all the crystals according to their fractional
representation. Since there is no volumetric plastic strain the volumetric elastic law,

applies in this case. The deviatoric stress is given by,

ISURF

§.j = IZ K(l)'(gij - pNij (1))

The quantity K(1) is an elastic constant corresponding to the 1™ yield surface and 0O; (1) is the plastic
strain associated with the 1™ yield surface. Since 0O; (1) will equal zero for all values of | in the annealed

state and e;; is measured from the annealed, stressless configuration, the initial response is elastic and the
K(1) values must satisfy the condition,

ISURF E
Kl =2-G =
D, KO -
so that,
E ISURF
5 = SN QR
4 1 + v Y 121 1
and
E E - ISURF -
Si=——ey S A—— &~ S K()-p. (1l
ij 3(1—2V) kk ij 1+v ij ; () pl_]()
v-E E ISURF
- e St e — SK()-p. (1
(1_2.\/)'(1_"_1)) Sk 1_]+1+D el_] 121 () plj()

lth

The yield condition for the I yield surface is,
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where the values of r(l) are ordered so that r(k+1) > r(k). Note that the same value of k is used for all
the yield conditions so that the back stress for the 1™ yield surface has a proportionality to 0O; (1) that is

independent of 1.

The condition that the yield condition is continuously satisfied during loading is found by requiring that
when the small change of strain €; —€; + A€; occurs the corresponding change in p; — 0; + Ap; be

governed by,
€« p, () (A8, —x - AP, (1))=0
so that,

w,0- 28220,

K ) ﬁmn (I)). Aamn

This completes the general theoretical basis. The required constants for the complete model of the
polycrystalline material are,

v = Poisson’s ratio

K = work hardening parameter
ISURF = number of yield surfaces

K() =modified stiffness, | = 1, ISURF

(1) = \/% - (I yield surface radius in the n-plane), 1 = 1, ISURF

These values must be obtained from experiments.
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2. USING THE TENSION TEST TO EVALUATE THE MATERIAL PROPERTIES

When Poisson’s ratio and a tensile test stress-strain curve for an annealed specimen are known,
then the parameters for the material model may be found. The stress-strain curve starts at coordinates
(0,0) and extends to the maximum stress of the tension test. The maximum strain in the tensile test must
cover the extent of the strain being modeled. As this model is for small strains the maximum strain for
the mathematical model should not exceed about 0.20.

Most annealed metals have stress-strain curves, in the region of 0. to 0.2 strain, that begins with
an elastic region and ends with a linear section whose slope is much less than the original slope of the
material. The first step for finding the model parameters is to select a number, ISURF, of points (not
including the origin) on the stress-strain curve that give an adequate representation of the curve. The
first point should be at the end of the elastic region and the last point should be at the beginning of the
linear part for larger strains. Identify the points chosen on the stress-strain curve as,

ex(l) =1" axial strain, ex(k+1) > ewx(k), 1= 1, ISURF
sa(l)  =1™ axial stress corresponding to eu(1), 1= 1, ISURF

In addition, the ratio of the slopes of the stress-strain curve for the large strain, linear part to the elastic
region should be evaluated. Denote this ratio as [slope ratio].

The value of the Poisson’s ratio, v, is specified (it must be less than 0.5) and Young’s modulus,
E, is given by,

s, (1)
e, (1)

then the shear modulus, G, is found from,

G = E
2-(1 + v)

In order to deduce further properties for the model from the stress-strain data it is necessary to
solve the tension test problem using the mathematical model equations described above in the preceding
section. Let the z-axis lie in the direction of the tensile loading stress, s,x . Then s,, equals s,x and all
other stresses vanish so that the non-vanishing deviatoric stress components are,
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Owing to the symmetry about the z axis the axial, e,, and lateral, - e}y, strains are the only strains so that
the non-vanishing strain components are,

Cxx = - Clat
Cyy = - Clat
€2z = Cax

and the only non-vanishing deviatoric strains are,

~ 1.

exx =73 (eax + elat)
_ 1.( )

eyy =—3"Cux T Cix

~ 2,
ezz =73 (eax + elal)

The symmetry of the problem also leads to a simplification of the plastic strain formulation. The non-
vanishing components of the plastic strains may be written for | from 1 to ISURF as,

P = oD = -3:0,() = -5, (D)
P, = p, () = -3 0,() = -3 p, (D

P, = p,) = p, D = p, D
The 1" yield condition becomes,
r(l) = % (eax + eIat )_ K- pax (1)

When this yield condition is satisfied the corresponding loading condition is,

AR W YRR

When both the yield condition and the loading condition are satisfied for a particular value of 1 the
incremental plastic flow is given by,

K-Ap, () = %-(Aealx + Aelat)
The elastic compressibility condition is,

E
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so that ey, may be written as,

€t =%-eax - (1 —2-v)-%

The axial deviatoric stress-strain equation gives,

E ISURF

-%-(eax + e,at)— ZK(I)'pax(l)

This equation may be written in incremental form as,

E ISURF

8, =1y (Bew + 8oy )= S K180,

Before continuing to find the K(I) quantities, consider the case where the strain point has
contacted all the yield surfaces and the loading is continued. This case can be used to find k. In this

case,
Ao, () = %-(Ae, +Ae, )/k  forl = 1:-ISURF

Combining the last two equations and using the condition that the sum of all the K(I) values equals
E

m £g1ves,
E 1
As, = L+ U(Aeax + Ae, )(1 - ;)

The equation for e, given above (i.e.-five equations above) may be written in incremental form as,

As,,
E

Ae, =1-Ae, - (1-2-v)

Eliminating Aej,; between the last two equations and noting that the quantity [slope ratio] defined earlier
is given by,

[slope ratio] =

yields,

(1 + v)- [slope ratio]

1
K 3 (1 - 2v)- [slope ratio]
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so that this equation determines K based on data from the measured tensile test stress-strain curve.

Now return to the deviatoric stress-strain equation and the incremental form of the equation for
et - Combining these equations to eliminate Aej, gives,

2 -v 3-E ISURF
T As, =y A, -3 Y K()-Ap,
1+ v ax 2'(1+U) ax 2 “ () pax()

The values for K(I) for 1 from 1 to ISURF are found successively using the last equation.
Referring now to the input data e,x(1), sax(l), 1 = 1,7, ISURF described previously, let,

ASaX = Sax(z) = Sax(l)
Aeax = eax(z) = eax(l)

For this increment of loading the plastic strains, pax(1), are,

Ap, (1) = 3+ (ae,, +Aem)/x=(Aeax ~2.(1-2- .A;ax) I

Ap, (k)=0  fork = 2, ISURF

Then, from the incremental, deviatoric stress-strain equation, the value of K(1) may be found. This
equation is,

. As,,

2—U A _i.K(l).Aeax_%'(l_
2(1+U) m T gy Tow TR K

When K(1) has been found using this equation, K(2) may be found using,

ASaX = Sax(3) = Sax(z)
Aeax = eax(3) = eax(z)

and,

AL (1) = 80, () = B, -3

Ap,(k)=0  fork = 3, ISURF

so that
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ASaX
E

}—E-Ae —2_—U-As —i-(K(l)+K(2))-
2'(1+U) S B TR

fey - 3(1-2v)
K

This procedure can be repeated for each input strain and stress increment so that K(1), ", K(ISURF - 1)

E
can be found. Then the condition that the sum of K(I) for | from 1 to ISURF equals T
v
to find K(ISURF) as,

may be used

E ISURF - 1
K(SURF) = ——— - 2 K()
=1

The procedure described above determines all the required parameters for the mathematical model based
on a specified value of Poisson’s ratio and a stress-strain curve.
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APPENDIX 4, SOME FORMULAS

Oy
cx=2-k-m+k-sin(2-0)
o, =2'k-o-k-sin(2-0)
y
> T T =—k'c0s(2-0)
l [ d
— —_—
6x+6y o
— 4k 2k
J 0=%arctan[ 21 ]+%
6, -G,

: \ ( N, =0, -cos’ (o) + o, -sin?(a)+ 27 -cos(a) sin(a)
A T, = (Gx ~ Oy )Si“(‘l)‘ cos(a)+ T"@inz(a)— cosz(a))

bt e (0, + €)@ 20 oo 1] i

% 1
(a)

N=2-k-co+k-sin(2-(0—a))
T=—k-cos(2-(9—a))
N'=2'k-o -k-sin(2-(0 - a))

==}
Il

<

NID—‘

)
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[Fy-dV = [F-n, -dS
\% S

icij g -V =£(<sij u, )V =£cij ‘u;n,-dS =£Ti u, -dS

X=0, -cos(a)+ r--sin(a)

Y=o, ~sin(a)+ ‘r-cos(a)

Polar Coordinates

_ou

do, 1 9Ty 6.0y _, "oor

or r 40 r u ov

1 do 0T 21 £e=;+r-60

.. 9+ r(-)+ r(-)=0

r 00 or r . du +3_V_X
WU r90 or r

Schwarz’ Inequality

5=ax-i+ay-j+az-lz, B=bx-f+by-j
The last equation may be verified by expansion
2 2 2 2
Q‘x tay )(’x +by )Z(ax'bx+ay'by)

i.e. - the product of the lengths is greater than their dot product squared.
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APPENDIX 5, THE PRANDL-REUSS EQUATIONS FOR PERFECTLY FLASTIC FLOW

Stresses: Ox, Oy, Oy, Txy, Tyz, Trx
Reduced stresses:

=1.
§=3 (GX +0'y +OZ)

Sy =0, —§
Sy =0, =8
s, =0, —5§

shear stresses unchanged
Engineering strains: €y, €y, €2, Yxy, Yyz> Yox

Reduced strains:

1.
c=3 (Ex +8y +EZ)

e, =€, —¢
e, =g, —¢
e,=¢,—-¢

shear strains unchanged

Hooke’s law

E
G=——

2-(1+v)

E

K=—F—

3-(1-2-v)
2-G-é,'=5$,
2-G-é,'=3,
2:G-¢,'=5$,

Von Mises yield condition
2 2 ] ) ) 3. ([ 2 2 2 )= 2 3.2
6, +0, +06, -0,'6,-6,°6,-0,°C, + iy tTy, T, Oyp =

X y z X

Prandtl-Reuss formulation
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e=0
2-G-¢é, =S, +h-s,
2-G-éy =éy +7\.'Sy

2-G-¢,=5,+A\"s,
Gy =Ty + ATy
Yy =Ty, + AT,

AT,

G.
G.YZX =’tZ
Wi=s, "€ +8, 7€y +5,°€, +Tyy "Vyy +Typ Vyz + Tpx " Vix

rate of distortion work
G-W=»rk?
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